| Title: | Coefficient inequality for a function whose derivative has a positive real part of order $\alpha $ (English) | 
| Author: | Krishna, Deekonda Vamshee | 
| Author: | Ramreddy, Thoutreddy | 
| Language: | English | 
| Journal: | Mathematica Bohemica | 
| ISSN: | 0862-7959 (print) | 
| ISSN: | 2464-7136 (online) | 
| Volume: | 140 | 
| Issue: | 1 | 
| Year: | 2015 | 
| Pages: | 43-52 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | The objective of this paper is to obtain sharp upper bound for the function $f$ for the second Hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$, when it belongs to the class of functions whose derivative has a positive real part of order $\alpha $ $(0\leq \alpha <1)$, denoted by $ RT(\alpha )$. Further, an upper bound for the inverse function of $f$ for the nonlinear functional (also called the second Hankel functional), denoted by $|t_{2}t_{4}-t_{3}^{2}|$, was determined when it belongs to the same class of functions, using Toeplitz determinants. (English) | 
| Keyword: | analytic function | 
| Keyword: | upper bound | 
| Keyword: | second Hankel functional | 
| Keyword: | positive real function | 
| Keyword: | Toeplitz determinant | 
| MSC: | 30C45 | 
| MSC: | 30C50 | 
| idZBL: | Zbl 06433697 | 
| idMR: | MR3324418 | 
| DOI: | 10.21136/MB.2015.144178 | 
| . | 
| Date available: | 2015-03-09T17:39:30Z | 
| Last updated: | 2020-07-29 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/144178 | 
| . | 
| Reference: | [1] Abubaker, A., Darus, M.: Hankel determinant for a class of analytic functions involving a generalized linear differential operator.Int. J. Pure Appl. Math. 69 429-435 (2011). Zbl 1220.30011, MR 2847841 | 
| Reference: | [2] Ali, R. M.: Coefficients of the inverse of strongly starlike functions.Bull. Malays. Math. Sci. Soc. (2) 26 63-71 (2003). Zbl 1185.30010, MR 2055766 | 
| Reference: | [3] Ehrenborg, R.: The Hankel determinant of exponential polynomials.Am. Math. Mon. 107 557-560 (2000). Zbl 0985.15006, MR 1767065, 10.2307/2589352 | 
| Reference: | [4] Grenander, U., Szegő, G.: Toeplitz Forms and Their Applications.Chelsea Publishing Co., New York (1984). Zbl 0611.47018, MR 0890515 | 
| Reference: | [5] Janteng, A., Halim, S. A., Darus, M.: Hankel determinant for starlike and convex functions.Int. J. Math. Anal., Ruse 1 619-625 (2007). Zbl 1137.30308, MR 2370200 | 
| Reference: | [6] Janteng, A., Halim, S. A., Darus, M.: Coefficient inequality for a function whose derivative has a positive real part.J. Inequal. Pure Appl. Math. (electronic only) 7 Article 50, 5 pages (2006). Zbl 1134.30310, MR 2221331 | 
| Reference: | [7] Layman, J. W.: The Hankel transform and some of its properties.J. Integer Seq. (electronic only) 4 Article 01.1.5, 11 pages (2001). Zbl 0978.15022, MR 1848942 | 
| Reference: | [8] MacGregor, T. H.: Functions whose derivative has a positive real part.Trans. Am. Math. Soc. 104 532-537 (1962). Zbl 0106.04805, MR 0140674, 10.1090/S0002-9947-1962-0140674-7 | 
| Reference: | [9] Mishra, A. K., Gochhayat, P.: Second Hankel determinant for a class of analytic functions defined by fractional derivative.Int. J. Math. Math. Sci. 2008 Article ID 153280, 10 pages (2008). Zbl 1158.30308, MR 2392999 | 
| Reference: | [10] Murugusundaramoorthy, G., Magesh, N.: Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant.Bull. Math. Anal. Appl. 1 85-89 (2009). Zbl 1312.30024, MR 2578118 | 
| Reference: | [11] Noonan, J. W., Thomas, D. K.: On the second Hankel determinant of areally mean $p$-valent functions.Trans. Am. Math. Soc. 223 337-346 (1976). Zbl 0346.30012, MR 0422607 | 
| Reference: | [12] Noor, K. I.: Hankel determinant problem for the class of functions with bounded boundary rotation.Rev. Roum. Math. Pures Appl. 28 731-739 (1983). Zbl 0524.30008, MR 0725316 | 
| Reference: | [13] Pommerenke, C.: Univalent Functions. With a Chapter on Quadratic Differentials by Gerd Jensen.Studia Mathematica/Mathematische Lehrbücher. Band 25 Vandenhoeck & Ruprecht, Göttingen (1975). Zbl 0298.30014, MR 0507768 | 
| Reference: | [14] Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory.American Mathematical Society Colloquium Publications 54 AMS, Providence (2005). Zbl 1082.42020, MR 2105088, 10.1090/coll/054.2 | 
| . |