[1] Betts, J.: 
Issues in the direct transcription of optimal control problem to sparse nonlinear programs. In: Computational Optimal Control (R. Bulirsch and D. Kraft, eds.), Birkhauser, 1994, pp. 3-17. 
DOI 10.1007/978-3-0348-8497-6_1 | 
MR 1287613[2] Betts, J.: 
Survey of numerical methods for trajectory optimization. J. Guidance, Control, and Dynamics 21 (1998), 193-207. 
DOI 10.2514/2.4231 | 
Zbl 1158.49303[3] Boor, C. De.: 
A Practical Guide to Spline. Springer-Verlag, New York 1978. 
MR 0507062[4] Elnegar, G. N., Kazemi, M. A.: 
Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems. Comput. Optim. Appl. 11 (1998), 195-217. 
DOI 10.1023/A:1018694111831 | 
MR 1652069[5] Foroozandeh, Z., Shamsi, M.: 
Solution of nonlinear optimal control problems by the interpolating scaling functions. Acta Astronautica 72 (2012), 21-26. 
DOI 10.1016/j.actaastro.2011.10.004[6] Gong, Q., Kang, W., Ross, I. M.: 
A pseudospectral method for the optimal control of constrained feedback linearizable systems. IEEE Trans. Automat. Control 51 (2006), 1115-1129. 
DOI 10.1109/tac.2006.878570 | 
MR 2238794[12] Lakestani, M., Razzaghi, M., Dehghan, M.: 
Solution of nonlinear fredholm-hammerstein integral equations by using semiorthogonal spline wavelets. Hindawi Publishing Corporation Mathematical Problems in Engineering 1 (2005), 113-121. 
DOI 10.1155/mpe.2005.113 | 
MR 2144111 | 
Zbl 1073.65568[13] Lakestani, M., Razzaghi, M., Dehghan, M.: 
Semiorthogonal spline wavelets approximation for fredholm integro-differential equations. Hindawi Publishing Corporation Mathematical Problems in Engineering 1 (2006), 1-12. 
DOI 10.1155/mpe/2006/96184 | 
Zbl 1200.65112[15] Marzban, H. R., Razzaghi, M.: 
Rationalized Haar approach for nonlinear constrined optimal control problems. Appl. Math. Modell. 34 (2010), 174-183. 
DOI 10.1016/j.apm.2009.03.036 | 
MR 2566686[18] Mehra, R. K., Davis, R. E.: 
A generalized gradient method for optimal control problems with inequality constraints and singular arcs. IEEE Trans. Automat. Control 17 (1972), 69-72. 
DOI 10.1109/tac.1972.1099881 | 
Zbl 0268.49038[19] Ordokhani, Y., Razzaghi, M.: 
Linear quadratic optimal control problems with inequality constraints via rationalized Haar functions. Dynam. Contin. Discrete Impuls. Syst. Ser. B 12 (2005), 761-773. 
MR 2179602 | 
Zbl 1081.49026[20] Powell, M. J. D.: 
An efficient method for finding the minimum of a function of several variables without calculating the derivatives. Comput. J. 7 (1964), 155-162. 
DOI 10.1093/comjnl/7.2.155 | 
MR 0187376[21] Razzaghi, M., Elnagar, G.: 
Linear quadratic optimal control problems via shifted Legendre state parameterization. Int. J. Systems Sci. 25 (1994), 393-399. 
DOI 10.1080/00207729408928967 | 
MR 1262503[22] Schittkowskki, K.: 
NLPQL: A fortran subroutine for solving constrained nonlinear programming problems. Ann. Oper. Res. 5 (1986), 2, 485-500. 
DOI 10.1007/bf02022087 | 
MR 0948031[26] Yen, V., Nagurka, M.: 
Linear quadratic optimal control via Fourier-based state parameterization. J. Dynam. Syst. Measure Control 11 (1991), 206-215. 
DOI 10.1115/1.2896367[27] Yen, V., Nagurka, M.: 
Optimal control of linearly constrained linear systems via state parameterization. Optimal Control Appl. Methods 13 (1992), 155-167. 
DOI 10.1002/oca.4660130206 | 
MR 1197736