| Title: | Generalized synchronization in a system of several non-autonomous oscillators coupled by a medium (English) | 
| Author: | Martins, Rogério | 
| Author: | Morais, Gonçalo | 
| Language: | English | 
| Journal: | Kybernetika | 
| ISSN: | 0023-5954 (print) | 
| ISSN: | 1805-949X (online) | 
| Volume: | 51 | 
| Issue: | 2 | 
| Year: | 2015 | 
| Pages: | 347-373 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | An abstract theory on general synchronization of a system of several oscillators coupled by a medium is given. By generalized synchronization we mean the existence of an invariant manifold that allows a reduction in dimension. The case of a concrete system modeling the dynamics of a chemical solution on two containers connected to a third container is studied from the basics to arbitrary perturbations. Conditions under which synchronization occurs are given. Our theoretical results are complemented with a numerical study. (English) | 
| Keyword: | coupled oscillators | 
| Keyword: | synchronization | 
| Keyword: | invariant manifolds | 
| MSC: | 34C15 | 
| MSC: | 34D06 | 
| MSC: | 34D35 | 
| idZBL: | Zbl 06487084 | 
| idMR: | MR3350567 | 
| DOI: | 10.14736/kyb-2015-2-0347 | 
| . | 
| Date available: | 2015-06-19T15:27:40Z | 
| Last updated: | 2016-01-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/144303 | 
| . | 
| Reference: | [1] Hartshorne, R.: Algebraic Geometry..Graduate Texts in Mathematics, Springer, 1977. Zbl 1306.00013, MR 0463157, 10.1007/978-1-4757-3849-0 | 
| Reference: | [2] Hatcher, A.: Algebraic Topology..Cambridge University Press, 2002. Zbl 1044.55001, MR 1867354, 10.1017/s0013091503214620 | 
| Reference: | [3] Horn, R., Johnson, C.: Topics in Matrix Analysis..Cambridge University Press, 1990. Zbl 0801.15001, MR 1288752, 10.1017/cbo9780511840371 | 
| Reference: | [4] Katriel, G.: Synchronization of oscillators coupled through an environment..Physica D 237 (2008), 2933-2944. Zbl 1184.34060, MR 2514073, 10.1016/j.physd.2008.04.015 | 
| Reference: | [5] Margheri, A., Martins, R.: Generalized synchronization in linearly coupled time periodic systems..J. Differential Equations 249 (2010), 3215-3232. MR 2737427, 10.1016/j.jde.2010.09.005 | 
| Reference: | [6] Morais, G.: Dinâmica de Osciladores Acoplados..PhD Thesis, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2013. | 
| Reference: | [7] Pantaleone, J.: Synchronization of metronomes..Am. J. Phys. 70 (2002), 992-1000. 10.1119/1.1501118 | 
| Reference: | [8] Smith, R. A.: Poincaré index theorem concerning periodic orbits of differential equations..Proc. London Math. Soc. s3-48 (1984), 2, 341-362. Zbl 0509.34046, MR 0729074, 10.1112/plms/s3-48.2.341 | 
| Reference: | [9] Smith, R. A.: Massera's convergence theorem for periodic nonlinear differential equations..J. Math. Anal. Appl 120 (1986), 679-708. Zbl 0603.34033, MR 0864784, 10.1016/0022-247x(86)90189-7 | 
| Reference: | [10] Wazewski, T.: Sur un principle topologique de l'examen de l'allure asymptotique des integrales des Equations differentielles ordinaires..Ann. Soc. Polon Math. 20 (1947), 279-313. MR 0026206 | 
| . |