Previous |  Up |  Next

Article

Title: Estimates of the principal eigenvalue of the $p$-Laplacian and the $p$-biharmonic operator (English)
Author: Benedikt, Jiří
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 2
Year: 2015
Pages: 215-222
Summary lang: English
.
Category: math
.
Summary: We survey recent results concerning estimates of the principal eigenvalue of the Dirichlet $p$-Laplacian and the Navier $p$-biharmonic operator on a ball of radius $R$ in $\mathbb R^N$ and its asymptotics for $p$ approaching $1$ and $\infty $. Let $p$ tend to $\infty $. There is a critical radius $R_C$ of the ball such that the principal eigenvalue goes to $\infty $ for $0<R\leq R_C$ and to $0$ for $R>R_C$. The critical radius is $R_C=1$ for any $N\in \mathbb N$ for the $p$-Laplacian and $R_C=\sqrt {2N}$ in the case of the $p$-biharmonic operator. When $p$ approaches $1$, the principal eigenvalue of the Dirichlet $p$-Laplacian is $NR^{-1}\*(1-(p-1)\log R(p-1))+o(p-1)$ while the asymptotics for the principal eigenvalue of the Navier $p$-biharmonic operator reads $2N/R^2+O(-(p-1)\log (p-1))$. (English)
Keyword: eigenvalue problem for $p$-Laplacian
Keyword: eigenvalue problem for $p$-biharmonic operator
Keyword: estimates of principal eigenvalue
Keyword: asymptotic analysis
MSC: 35J20
MSC: 35J25
MSC: 35J66
MSC: 35J92
MSC: 35P15
MSC: 35P30
idZBL: Zbl 06486935
idMR: MR3368495
DOI: 10.21136/MB.2015.144327
.
Date available: 2015-06-30T12:20:52Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144327
.
Reference: [1] Allegretto, W., Huang, Y. X.: A Picone's identity for the $p$-Laplacian and applications.Nonlinear Anal., Theory Methods Appl. 32 819-830 (1998). Zbl 0930.35053, MR 1618334
Reference: [2] Benedikt, J., Drábek, P.: Asymptotics for the principal eigenvalue of the $p$-biharmonic operator on the ball as $p$ approaches 1.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 95 735-742 (2014). Zbl 1281.35061, MR 3130558, 10.1016/j.na.2013.10.016
Reference: [3] Benedikt, J., Drábek, P.: Asymptotics for the principal eigenvalue of the $p$-Laplacian on the ball as $p$ approaches 1.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 93 23-29 (2013). Zbl 1281.35064, MR 3117145, 10.1016/j.na.2013.07.026
Reference: [4] Benedikt, J., Drábek, P.: Estimates of the principal eigenvalue of the $p$-biharmonic operator.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 5374-5379 (2012). Zbl 1244.35096, MR 2927595, 10.1016/j.na.2012.04.055
Reference: [5] Benedikt, J., Drábek, P.: Estimates of the principal eigenvalue of the $p$-Laplacian.J. Math. Anal. Appl. 393 311-315 (2012). Zbl 1245.35075, MR 2921671, 10.1016/j.jmaa.2012.03.054
Reference: [6] Biezuner, R. J., Brown, J., Ercole, G., Martins, E. M.: Computing the first eigenpair of the $p$-Laplacian via inverse iteration of sublinear supersolutions.J. Sci. Comput. 52 180-201 (2012). Zbl 1255.65205, MR 2923523, 10.1007/s10915-011-9540-0
Reference: [7] Biezuner, R. J., Ercole, G., Martins, E. M.: Computing the first eigenvalue of the $p$-Laplacian via the inverse power method.J. Funct. Anal. 257 243-270 (2009). Zbl 1172.35047, MR 2523341, 10.1016/j.jfa.2009.01.023
Reference: [8] Bueno, H., Ercole, G., Zumpano, A.: Positive solutions for the $p$-Laplacian and bounds for its first eigenvalue.Adv. Nonlinear Stud. 9 313-338 (2009). Zbl 1181.35115, MR 2503832, 10.1515/ans-2009-0206
Reference: [9] Drábek, P., Milota, J.: Methods of Nonlinear Analysis. Applications to Differential Equations.Birkhäuser Advanced Texts: Basel Lehrbücher Birkhäuser, Basel (2007). Zbl 1176.35002, MR 2323436
Reference: [10] Drábek, P., Ôtani, M.: Global bifurcation result for the $p$-biharmonic operator.Electron. J. Differ. Equ. (electronic only) 2001 48 19 pages (2001). Zbl 0983.35099, MR 1846664
Reference: [11] Jaroš, J.: Picone's identity for the $p$-biharmonic operator with applications.Electron. J. Differ. Equ. (electronic only) 2011 122 6 pages (2011). Zbl 1229.35024, MR 2836803
Reference: [12] Juutinen, P., Lindqvist, P., Manfredi, J. J.: The $\infty$-eigenvalue problem.Arch. Ration. Mech. Anal. 148 89-105 (1999). Zbl 0947.35104, MR 1716563, 10.1007/s002050050157
Reference: [13] Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE.Lecture Notes in Mathematics 1150 Springer, Berlin (1985). Zbl 0593.35002, MR 0810619, 10.1007/BFb0075060
Reference: [14] Kawohl, B., Fridman, V.: Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant.Commentat. Math. Univ. Carol. 44 659-667 (2003). Zbl 1105.35029, MR 2062882
.

Files

Files Size Format View
MathBohem_140-2015-2_9.pdf 293.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo