[1] Albiac F., Kalton N.J.: 
Topics in Banach Space Theory. Graduate Texts in Mathematics, 233, Springer, New York, NY, USA, 2006. 
MR 2192298 | 
Zbl 1094.46002[2] Ansari S.I.: 
On Banach spaces $Y$ for which $B(C(\Omega),Y)= K(C(\Omega),Y)$. Pacific J. Math. 169 (1995), 201–218. 
MR 1346253 | 
Zbl 0831.47015[3] Bator E.M.: 
Remarks on completely continuous operators. Bull. Polish Acad. Sci. Math. 37 (1989), 409–413. 
MR 1101901 | 
Zbl 0767.46010[5] Bator E.M., Lewis P., Ochoa J.: 
Evaluation maps, restriction maps, and compactness. Colloq. Math. 78 (1998), 1–17. 
MR 1658115 | 
Zbl 0948.46008[6] Bessaga C., Pelczynski A.: 
On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958), 151–174. 
MR 0115069 | 
Zbl 0084.09805[9] Bourgain J.: 
New Classes of $\mathcal{L}_p$-spaces. Lecture Notes in Math., 889, Springer, Berlin-New York, 1981. 
MR 0639014[11] Bourgain J.: 
$H^{\infty }$ is a Grothendieck space. Studia Math. 75 (1983), 193–216. 
MR 0722264[13] Diestel J.: 
Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92, Springer, Berlin, 1984. 
MR 0737004[15] Diestel J., Uhl J.J., Jr.: 
Vector Measures. Math. Surveys 15, American Mathematical Society, Providence, RI, 1977. 
MR 0453964 | 
Zbl 0521.46035[18] Emmanuele G.: 
On the containment of $c_0$ in spaces of compact operators. Bull. Sci. Math. 115 (1991), 177–184. 
MR 1101022[19] Emmanuele G.: 
Dominated operators on $C[0,1]$ and the $(CRP)$. Collect. Math. 41 (1990), 21–25. 
MR 1134442 | 
Zbl 0752.47006[20] Emmanuele G.: 
A dual characterization of Banach spaces not containing $\ell^1$. Bull. Polish Acad. Sci. Math. 34 (1986), 155–160. 
MR 0861172[23] Ghenciu I., Lewis P.: 
The Dunford-Pettis property, the Gelfand-Phillips property and $(L)$-sets". Colloq. Math. 106 (2006), 311–324. 
DOI 10.4064/cm106-2-11 | 
MR 2283818[27] Leavelle T.: Dissertation. UNT.
[28] Lindenstrauss J., Tzafriri L.: 
Classical Banach Spaces II. Springer, Berlin-New York, 1979. 
MR 0540367 | 
Zbl 0403.46022[29] Pełczyński A.: On Banach spaces containing $L^1(\mu)$. Studia Math. 30 (1968), 231–246.
[30] Pełczyński A.: 
Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Math. Astronom. Phys. 10 (1962), 641–648. 
MR 0149295 | 
Zbl 0107.32504[31] Pełczyński A., Semadeni Z.: 
Spaces of continuous functions (III). Studia Math. 18 (1959), 211–222. 
MR 0107806 | 
Zbl 0091.27803[32] Pisier G.: 
Factorization of Linear Operators and Geometry of Banach Spaces. CBMS Regional Conf. Series in Math. 60, American Mathematical Society, Providence, RI, 1986. 
MR 0829919 | 
Zbl 0588.46010[35] Saab E., Saab P.: 
On stability problems of some properties in Banach spaces. in: K. Sarosz (ed.), Function Spaces, Lecture Notes Pure Appl. Math., 136, Dekker, New York 1992, 367–394. 
MR 1152362 | 
Zbl 0787.46022