| Title: | On the range-kernel orthogonality of elementary operators (English) | 
| Author: | Bouali, Said | 
| Author: | Bouhafsi, Youssef | 
| Language: | English | 
| Journal: | Mathematica Bohemica | 
| ISSN: | 0862-7959 (print) | 
| ISSN: | 2464-7136 (online) | 
| Volume: | 140 | 
| Issue: | 3 | 
| Year: | 2015 | 
| Pages: | 261-269 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $L(H)$ denote the algebra of operators on a complex infinite dimensional Hilbert space $H$. For $A, B\in L(H)$, the generalized derivation $\delta _{A,B}$ and the elementary operator $\Delta _{A,B}$ are defined by $\delta _{A,B}(X)=AX-XB$ and $\Delta _{A,B}(X)=AXB-X$ for all $X\in L(H)$. In this paper, we exhibit pairs $(A,B)$ of operators such that the range-kernel orthogonality of $\delta _{A,B}$ holds for the usual operator norm. We generalize some recent results. We also establish some theorems on the orthogonality of the range and the kernel of $\Delta _{A,B}$ with respect to the wider class of unitarily invariant norms on $L(H)$. (English) | 
| Keyword: | derivation | 
| Keyword: | elementary operator | 
| Keyword: | orthogonality | 
| Keyword: | unitarily invariant norm | 
| Keyword: | cyclic subnormal operator | 
| Keyword: | Fuglede-Putnam property | 
| MSC: | 47A30 | 
| MSC: | 47A63 | 
| MSC: | 47B10 | 
| MSC: | 47B15 | 
| MSC: | 47B20 | 
| MSC: | 47B47 | 
| idZBL: | Zbl 06486938 | 
| idMR: | MR3397256 | 
| DOI: | 10.21136/MB.2015.144393 | 
| . | 
| Date available: | 2015-09-03T10:47:52Z | 
| Last updated: | 2020-07-29 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/144393 | 
| . | 
| Reference: | [1] Anderson, J.: On normal derivations.Proc. Am. Math. Soc. 38 (1973), 135-140. Zbl 0255.47036, MR 0312313, 10.1090/S0002-9939-1973-0312313-6 | 
| Reference: | [2] Berger, C. A., Shaw, B. I.: Selfcommutators of multicyclic hyponormal operators are always trace class.Bull. Am. Math. Soc. 79 (1974), 1193-1199. Zbl 0283.47018, MR 0374972 | 
| Reference: | [3] Bouali, S., Bouhafsi, Y.: On the range kernel orthogonality and {$P$}-symmetric operators.Math. Inequal. Appl. 9 (2006), 511-519. Zbl 1112.47026, MR 2242781 | 
| Reference: | [4] Delai, M. B., Bouali, S., Cherki, S.: A remark on the orthogonality of the image to the kernel of a generalized derivation.Proc. Am. Math. Soc. 126 French (1998), 167-171. MR 1416081 | 
| Reference: | [5] Duggal, B. P.: A perturbed elementary operator and range-kernel orthogonality.Proc. Am. Math. Soc. 134 (2006), 1727-1734. Zbl 1082.47031, MR 2204285, 10.1090/S0002-9939-05-08337-1 | 
| Reference: | [6] Duggal, B. P.: A remark on normal derivations.Proc. Am. Math. Soc. 126 (1998), 2047-2052. Zbl 0894.47003, MR 1451795, 10.1090/S0002-9939-98-04326-3 | 
| Reference: | [7] Gohberg, I. C., Kreĭn, M. G.: Introduction to the Theory of Linear Nonselfadjoint Operators.Translations of Mathematical Monographs 18 American Mathematical Society, Providence (1969), translated from the Russian, Nauka, Moskva, 1965. Zbl 0181.13504, MR 0246142, 10.1090/mmono/018/01 | 
| Reference: | [8] Kittaneh, F.: Normal derivations in norm ideals.Proc. Am. Math. Soc. 123 (1995), 1779-1785. Zbl 0831.47036, MR 1242091, 10.1090/S0002-9939-1995-1242091-2 | 
| Reference: | [9] Tong, Y.: Kernels of generalized derivations.Acta Sci. Math. 54 (1990), 159-169. Zbl 0731.47038, MR 1073431 | 
| Reference: | [10] Turnšek, A.: Orthogonality in {$\scr C_p$} classes.Monatsh. Math. 132 (2001), 349-354. MR 1844072, 10.1007/s006050170039 | 
| Reference: | [11] Turnšek, A.: Elementary operators and orthogonality.Linear Algebra Appl. 317 (2000), 207-216. Zbl 1084.47510, MR 1782211 | 
| Reference: | [12] Yoshino, T.: Subnormal operator with a cyclic vector.Tôhoku Math. J. II. Ser. 21 (1969), 47-55. Zbl 0192.47801, MR 0246145, 10.2748/tmj/1178243033 | 
| . |