Previous |  Up |  Next

Article

Keywords:
geodesic; shell of a curve; affine connection; (pseudo-)Riemannian metric; projective equivalence
Summary:
We determine in $\mathbb {R}^n$ the form of curves $C$ corresponding to strictly monotone functions as well as the components of affine connections $\nabla $ for which any image of $C$ under a compact-free group $\Omega $ of affinities containing the translation group is a geodesic with respect to $\nabla $. Special attention is paid to the case that $\Omega $ contains many dilatations or that $C$ is a curve in $\mathbb {R}^3$. If $C$ is a curve in $\mathbb {R}^3$ and $\Omega $ is the translation group then we calculate not only the components of the curvature and the Weyl tensor but we also decide when $\nabla $ yields a flat or metrizable space and compute the corresponding metric tensor.
References:
[1] Betten, D.: Topological shift spaces. Adv. Geom. 5 (2005), 107-118. DOI 10.1515/advg.2005.5.1.107 | MR 2110464 | Zbl 1067.51007
[2] Betten, D.: Some classes of topological 3-spaces. German Result. Math. 12 (1987), 37-61. MR 0911460 | Zbl 0631.51006
[3] Cartan, E.: Les espaces riemanniens symétriques. French Verh. Internat. Math.-Kongr. 1 (1932), 152-161. Zbl 0006.42102
[4] Eisenhart, L. P.: Non-Riemannian geometry. American Mathematical Society Colloquium Publications 8 American Mathematical Society, Providence (1990). MR 1466961
[5] Gerlich, G.: Topological affine planes with affine connections. Adv. Geom. 5 (2005), 265-278. DOI 10.1515/advg.2005.5.2.265 | MR 2131819 | Zbl 1080.51007
[6] Gerlich, G.: Stable projective planes with Riemannian metrics. Arch. Math. 79 (2002), 317-320. DOI 10.1007/s00013-002-8318-x | MR 1944956 | Zbl 1022.51012
[7] Hinterleitner, I., Mikeš, J.: Geodesic mappings onto Weyl spaces. Proc. 8th Int. Conf. on Appl. Math (APLIMAT 2009) Bratislava 423-430.
[8] Irving, R. S.: Integers, Polynomials, and Rings. A Course in Algebra. Undergraduate Texts in Mathematics Springer, New York (2004). MR 2025456 | Zbl 1046.00002
[9] Kagan, V. F.: Subprojective Spaces. Russian Bibliothek der Russischen Wissenschaften Mathematik, Mechanik, Physik, Astronomie Staatsverlag für Physikalisch-Mathematische Literatur, Moskva (1961). MR 0131242
[10] Kamke, E.: Differentialgleichungen. Lösungsmethoden und Lösungen. 1. Gewöhnliche Differentialgleichungen. German Akademische Verlagsgesellschaft, Leipzig (1942). Zbl 0026.31801
[11] Kamke, E.: Differentialgleichungen Reeller Funktionen. Akademische Verlagsgesellschaft, Leipzig (1930), German.
[12] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci., New York 78 (1996), 311-333. DOI 10.1007/BF02365193 | MR 1384327
[13] Mikeš, J., Strambach, K.: Grünwald shift spaces. Publ. Math. 83 (2013), 85-96. MR 3081228 | Zbl 1289.51008
[14] Mikeš, J., Strambach, K.: Differentiable structures on elementary geometries. Result. Math. 53 (2009), 153-172. DOI 10.1007/s00025-008-0296-2 | MR 2481410
[15] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations. Palacký University, Faculty of Science, Olomouc (2009). MR 2682926 | Zbl 1222.53002
[16] Norden, A. P.: Spaces with Affine Connection. Russian Nauka Moskva (1976). MR 0467565 | Zbl 0925.53007
[17] Petrov, A. Z.: New Methods in the General Theory of Relativity. Russian Hauptredaktion für Physikalisch-Mathematische Literatur Nauka, Moskva (1966). MR 0207365
[18] Salzmann, H., Betten, D., Grundhöfer, T., Hähl, H., Löwen, R., Stroppel, M.: Compact Projective Planes. With an Introduction to Octonion Geometry. De Gruyter Expositions in Mathematics 21 De Gruyter, Berlin (1995). MR 1384300
[19] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces. Russian Nauka Moskva (1979). MR 0552022 | Zbl 0637.53020
[20] Yano, K., Bochner, S.: Curvature and Betti Numbers. Annals of Mathematics Studies 32 Princeton University Press 9, Princeton (1953). MR 0062505 | Zbl 0051.39402
Partner of
EuDML logo