[1] André, M.: 
Homologie des algèbres commutatives. Die Grundlehren der mathematischen Wissenschaften 206 Springer, Berlin French (1974). 
MR 0352220 | 
Zbl 0284.18009[2] Auslander, M., Bridger, M.: 
Stable Module Theory. Memoirs of the American Mathematical Society 94 American Mathematical Society, Providence (1969). 
MR 0269685 | 
Zbl 0204.36402[11] Christensen, L. W.: 
Semi-dualizing complexes and their Auslander categories. Appendix: Chain defects Trans. Am. Math. Soc. 353 (2001), 1839-1883. 
MR 1813596 | 
Zbl 0969.13006[18] Gelfand, S. I., Manin, Y. I.: 
Methods of Homological Algebra. Springer Monographs in Mathematics Springer, Berlin (1996), translated from the Russian Nauka Moskva (1988). 
Zbl 0668.18001[19] Goto, S.: 
A problem on Noetherian local rings of characteristic $p$. Proc. Am. Math. Soc. 64 (1977), 199-205. 
MR 0447212 | 
Zbl 0408.13008[20] Grothendieck, A.: Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents, Première partie (I). Publ. Math., Inst. Hautes Étud. Sci. 11 French (1961), 349-511.
[21] Hartshorne, R.: 
Residues and Duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/1964 Lecture Notes in Mathematics 20 Springer, Berlin (1966). 
DOI 10.1007/BFb0080482 | 
MR 0222093 | 
Zbl 0212.26101[22] Hungerford, T. W.: 
Algebra. Graduate Texts in Mathematics 73 Springer, New York (1980). 
MR 0600654 | 
Zbl 0442.00002[25] Kunz, E.: 
Characterizations of regular local rings for characteristic $p$. Am. J. Math. 91 (1969), 772-784. 
DOI 10.2307/2373351 | 
MR 0252389[26] Matsumura, H.: 
Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8 Cambridge University Press, Cambridge (1989). 
MR 1011461 | 
Zbl 0666.13002[30] Sather-Wagstaff, S.: 
Bass numbers and semidualizing complexes. Commutative Algebra and Its Applications M. Fontana et al.  Conf. Proc. Fez, Morocco, 2009. Walter de Gruyter Berlin (2009), 349-381. 
MR 2640315 | 
Zbl 1184.13045[32] Serre, J.-P.: 
Sur la dimension homologique des anneaux et des modules noethériens. Proc. of the International Symposium on Algebraic Number Theory, Tokyo & Nikko, 1955 Science Council of Japan Tokyo French (1956), 175-189. 
MR 0086071 | 
Zbl 0073.26004[34] Verdier, J.-L.: 
On derived categories of abelian categories. G. Maltsiniotis Astérisque 239 Société Mathématique de France, Paris French (1996). 
MR 1453167[35] Verdier, J.-L.: 
Catégories dérivées. Quelques résultats (Etat O). Cohomologie étale. Séminaire de géométrie algébrique du Bois-Marie SGA 4 1/2; Lecture Notes in Mathematics 569 Springer, Berlin French 262-311 (1977). 
MR 0463174 | 
Zbl 0407.18008