Previous |  Up |  Next

Article

Keywords:
effect-tribe; tribe; monotone $\sigma $-complete effect algebra; Riesz decomposition property; MV-algebra
Summary:
We show that an effect tribe of fuzzy sets ${\mathcal T}\subseteq [0,1]^X$ with the property that every $f\in {\mathcal T}$ is ${\mathcal B}_0({\mathcal T})$-measurable, where ${\mathcal B}_0({\mathcal T})$ is the family of subsets of $X$ whose characteristic functions are central elements in ${\mathcal T}$, is a tribe. Moreover, a monotone $\sigma$-complete effect algebra with RDP with a Loomis-Sikorski representation $(X, {\mathcal T},h)$, where the tribe ${\mathcal T}$ has the property that every $f\in {\mathcal T}$ is ${\mathcal B}_0({\mathcal T})$-measurable, is a $\sigma$-MV-algebra.
References:
[1] Buhagiar, D., Chetcuti, E., Dvurečenskij, A.: Loomis-Sikorski representation of monotone $\sigma$-complete effect algebras. Fuzzy Sets Syst. 157 (2006), 683-690. DOI 10.1016/j.fss.2005.09.013 | MR 2211326 | Zbl 1097.06010
[2] Butnariu, D., Klement, E. P.: Triangular Norm Based Measures and Games with Fuzzy Coalitions. Kluwer Academic Publisher, Dordrecht 1993. DOI 10.1007/978-94-017-3602-2 | MR 2867321 | Zbl 0804.90145
[3] Dvurečenskij, A.: Representation of states on effect-tribes and effect algebras by integrals. Rep. Math. Phys. 67 (2011), 63-85. DOI 10.1016/s0034-4877(11)80011-x | MR 2830095 | Zbl 1238.81008
[4] Dvurečenskij, A.: Smearing of observables and spectral measures on quantum structures. Found. Phys. 43 (2013), 210-224. DOI 10.1007/s10701-012-9689-x | MR 3019888 | Zbl 1270.81012
[5] Dvurečenskij, A.: Central elements and Cantor-Bernstein's theorem for pseudo effect algebras. J. Austral. Math. Soc. 74 (2003), 121-143. DOI 10.1017/s1446788700003177 | MR 1948263 | Zbl 1033.03036
[6] Dvurečenskij, A.: Loomis-Sikorski theorem for $\sigma$-complete MV-algebras and $\ell$-groups. J. Austral. Math. Soc. Ser. A 68 (2000), 261-277. DOI 10.1017/s1446788700001993 | MR 1738040 | Zbl 0958.06006
[7] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic/Ister Science, Dordrecht/Bratislava 2000. DOI 10.1007/978-94-017-2422-7 | MR 1861369 | Zbl 0987.81005
[8] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325-1346. DOI 10.1007/bf02283036 | MR 1304942 | Zbl 1213.06004
[9] Greechie, R. J., Foulis, D. J., Pulmannová, S.: The center of an effect algebra. Order 12 (1995), 91-106. DOI 10.1007/bf01108592 | MR 1336539 | Zbl 0846.03031
[10] Goodearl, K. R.: Partially Ordered Abelian Groups with Interpolation. Math. Surveys and Monographs, Vol. 20, Am. Math. Soc., Providence 1986. DOI 10.1007/bf01108592 | MR 0845783 | Zbl 0589.06008
[11] Jenčová, A., Pulmannová, S., Vinceková, E.: Observables on $\sigma$-MV algebras and $\sigma$-lattice effect algebras. Kybernetika 47 (2011), 541-559. MR 2884860 | Zbl 1237.81008
[12] Mundici, D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. Funct. Anal. 65 (1986), 15-63. DOI 10.1016/0022-1236(86)90015-7 | MR 0819173
[13] Mundici, D.: Tensor product and the Loomis-Sikorski theorem for MV-algebras. Adv. Appl. Math. 22 (1999), 227-248. DOI 10.1006/aama.1998.0631 | MR 1659410
[14] Pulmannová, S.: A spectral theorem for sigma MV-algebras. Kybernetika 41 (2005), 361-374. MR 2181424 | Zbl 1249.03119
[15] Ravindran, K.: On a Structure Theory of Effect Algebras. PhD. Thesis, Kansas State Univ. Manhattan 1996. MR 2694228
Partner of
EuDML logo