[1] Alford, W. R., Granville, A., Pomerance, C.: 
There are infinitely many Carmichael numbers. Ann. Math. (2) 139 (1994), 703-722. 
MR 1283874 | 
Zbl 0816.11005[2] Borwein, D., Maitland, C., Skerritt, M.: 
Computation of an improved lower bound to Giuga's primality conjecture. Integers (electronic only) 13 (2013), Paper A67, 14 pages. 
MR 3118385 | 
Zbl 1284.11002[3] Burcsi, P., Czirbusz, S., Farkas, G.: 
Computational investigation of Lehmer's totient problem. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 35 (2011), 43-49. 
MR 2894552 | 
Zbl 1240.11005[8] Giuga, G.: 
Su una presumibile proprietà caratteristica dei numeri primi. Ist. Lombardo Sci. Lett., Rend., Cl. Sci. Mat. Natur. (3) 14 (1951), 511-528 Italian. 
MR 0046381 | 
Zbl 0045.01801[9] Goldman, J. R.: 
Numbers of solutions of congruences: Poincaré series for strongly nondegenerate forms. Proc. Am. Math. Soc. 87 (1983), 586-590. 
MR 0687622 | 
Zbl 0511.12014[10] Hardy, G. H., Wright, E. M.: 
An Introduction to the Theory of Numbers. Oxford University Press Oxford (2008). 
MR 2445243 | 
Zbl 1159.11001[12] Lemmermeyer, F.: 
Conics---a poor man's elliptic curves. Preprint at  
http://www.fen.bilkent.edu.tr/ {franz/publ/conics.pdf} arXiv:math/0311306v1[math.NT].
[14] C. Pomerance, J. L. Selfridge, S. S. Wagstaff, Jr.: 
The pseudoprimes to $25\cdot 10^9$. Math. Comput. 35 (1980), 1003-1026. 
MR 0572872 | 
Zbl 0444.10007[15] Schettler, J.: 
Lehmer's totient problem and Carmichael numbers in a PID.  http://math.ucsb.edu/ {jcs/Schettler.pdf}. 
[20] Tarry, G., Franel, I., Korselt, A. R., Vacca, G.: Problème chinois. L'intermédiaire des mathématiciens 6 (1899), 142-144 French www.oeis.org/wiki/File:Problème\_chinois.pdf.