[1] Araya, R., Barrenechea, G. R., Poza, A. H., Valentin, F.: 
Convergence analysis of a residual local projection finite element method for the Navier-Stokes equations. SIAM J. Numer. Anal. 50 (2012), 669-699. 
DOI 10.1137/110829283 | 
MR 2914281 
[2] Chen, G., Feng, M., Zhou, H.: 
Local projection stabilized method on unsteady Navier-Stokes equations with high Reynolds number using equal order interpolation. Appl. Math. Comput. 243 (2014), 465-481. 
MR 3244494 | 
Zbl 1335.76033 
[5] Du, B., Su, H., Feng, X.: 
Two-level variational multiscale method based on the decoupling approach for the natural convection problem. Int. Commun. Heat. Mass. 61 (2015), 128-139. 
DOI 10.1016/j.icheatmasstransfer.2014.12.004 
[7] He, Y.: 
Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with {$H^2$} or {$H^1$} initial data. Numer. Methods Partial Differ. Equations 21 (2005), 875-904. 
DOI 10.1002/num.20065 | 
MR 2154224 | 
Zbl 1076.76059 
[8] Heywood, J. G., Rannacher, R.: 
Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982), 275-311. 
DOI 10.1137/0719018 | 
MR 0650052 | 
Zbl 0487.76035 
[10] Pyo, J. H.: 
A classification of the second order projection methods to solve the Navier-Stokes equations. Korean J. Math. 22 (2014), 645-658. 
DOI 10.11568/kjm.2014.22.4.645 
[11] Qian, Y. X., Zhang, T.: On error estimates of the projection method for the time-dependent natural convection problem: first order scheme. Submitted to Comput. Math. Appl.
[12] Qian, Y. X., Zhang, T.: On error estimates of a higher projection method for the time-dependent natural convection problem. Submitted to Front. Math. China.
[14] Shen, J.: 
On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations. Numer. Math. 62 (1992), 49-73. 
DOI 10.1007/BF01396220 | 
MR 1159045 
[15] Shen, S.: 
The finite element analysis for the conduction-convection problems. Math. Numer. Sin. 16 (1994), 170-182 Chinese. 
MR 1392611 | 
Zbl 0922.76105 
[18] Témam, R.: 
Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal. French 33 (1969), 377-385. 
DOI 10.1007/BF00247696 | 
MR 0244654 | 
Zbl 0207.16904 
[19] Témam, R.: 
Navier-Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and Its Applications, Vol. 2 North-Holland, Amsterdam (1984). 
MR 0609732 | 
Zbl 0568.35002 
[22] Zhang, T., Tao, Z.: 
Decoupled scheme for time-dependent natural convection problem II: time semidiscreteness. Math. Probl. Eng. 2014 (2014), Article ID 726249, 23 pages. 
MR 3294924 
[23] Zhang, T., Yuan, J., Si, Z.: 
Decoupled two-grid finite element method for the time-dependent natural convection problem I: Spatial discretization. Numer. Methods Partial Differ. Equations 31 (2015), 2135-2168. 
DOI 10.1002/num.21987 | 
MR 3403723 | 
Zbl 1336.65172 
[24] Zhang, X., Zhang, P.: 
Meshless modeling of natural convection problems in non-rectangular cavity using the variational multiscale element free Galerkin method. Eng. Anal. Bound. Elem. 61 (2015), 287-300. 
DOI 10.1016/j.enganabound.2015.08.005 | 
MR 3400016