Previous |  Up |  Next

Article

Title: Classification of rings with toroidal Jacobson graph (English)
Author: Selvakumar, Krishnan
Author: Subajini, Manoharan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 2
Year: 2016
Pages: 307-316
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative ring with nonzero identity and $J(R)$ the Jacobson radical of $R$. The Jacobson graph of $R$, denoted by $\mathfrak J_R$, is defined as the graph with vertex set $R\setminus J(R)$ such that two distinct vertices $x$ and $y$ are adjacent if and only if $1-xy$ is not a unit of $R$. The genus of a simple graph $G$ is the smallest nonnegative integer $n$ such that $G$ can be embedded into an orientable surface $S_n$. In this paper, we investigate the genus number of the compact Riemann surface in which $\mathfrak J_R$ can be embedded and explicitly determine all finite commutative rings $R$ (up to isomorphism) such that $\mathfrak J_R$ is toroidal. (English)
Keyword: planar graph
Keyword: genus of a graph
Keyword: local ring
Keyword: nilpotent element
Keyword: Jacobson graph
MSC: 05C10
MSC: 05C25
MSC: 13M05
idZBL: Zbl 06604468
idMR: MR3519603
DOI: 10.1007/s10587-016-0257-y
.
Date available: 2016-06-16T12:37:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145725
.
Reference: [1] Akbari, S., Maimani, H. R., Yassemi, S.: When a zero-divisor graph is planar or a complete $r$-partite graph.J. Algebra 270 (2003), 169-180. Zbl 1032.13014, MR 2016655, 10.1016/S0021-8693(03)00370-3
Reference: [2] Anderson, D. F., Badawi, A.: The total graph of a commutative ring.J. Algebra 320 (2008), 2706-2719. Zbl 1158.13001, MR 2441996, 10.1016/j.jalgebra.2008.06.028
Reference: [3] Anderson, D. F., Frazier, A., Lauve, A., Livingston, P. S.: The zero-divisor graph of a commutative ring II.Ideal Theoretic Methods in Commutative Algebra. Proc. Conf. in Honor of Prof. J. A. Huckaba's Retirement, University of Missouri, Columbia Lecture Notes Pure Appl. Math. 220 Marcel Dekker, New York (2001), 61-72. Zbl 1035.13004, MR 1836591
Reference: [4] Anderson, D. F., Livingston, P. S.: The zero-divisor graph of a commutative ring.J. Algebra 217 (1999), 434-447. Zbl 0941.05062, MR 1700509, 10.1006/jabr.1998.7840
Reference: [5] Ashrafi, N., Maimani, H. R., Pournaki, M. R., Yassemi, S.: Unit graphs associated with rings.Comm. Algebra 38 (2010), 2851-2871. Zbl 1219.05150, MR 2730284, 10.1080/00927870903095574
Reference: [6] Asir, T., Chelvam, T. Tamizh: On the genus of generalized unit and unitary Cayley graphs of a commutative ring.Acta Math. Hungar. 142 (2014), 444-458. MR 3165492, 10.1007/s10474-013-0365-1
Reference: [7] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra.Addison-Wesley, London (1969). Zbl 0175.03601, MR 0242802
Reference: [8] Azimi, A., Erfanian, A., Farrokhi, M.: The Jacobson graph of commutative rings.J. Algebra Appl. 12 Paper No. 1250179, 18 pages (2013). Zbl 1262.05076, MR 3007915, 10.1142/S0219498812501794
Reference: [9] Battle, J., Harary, F., Kodama, Y., Youngs, J. W. T.: Additivity of the genus of a graph.Bull. Am. Math. Soc. 68 (1962), 565-568. Zbl 0142.41501, MR 0155313, 10.1090/S0002-9904-1962-10847-7
Reference: [10] Beck, I.: Coloring of commutative rings.J. Algebra 116 (1988), 208-226. Zbl 0654.13001, MR 0944156, 10.1016/0021-8693(88)90202-5
Reference: [11] Belshoff, R., Chapman, J.: Planar zero-divisor graphs.J. Algebra 316 (2007), 471-480. Zbl 1129.13028, MR 2354873, 10.1016/j.jalgebra.2007.01.049
Reference: [12] Bloomfield, N., Wickham, C.: Local rings with genus two zero divisor graph.Commun. Algebra 38 (2010), 2965-2980. Zbl 1226.05132, MR 2730289, 10.1080/00927870903100093
Reference: [13] Chen, P.: A kind of graph structure of rings.Algebra Colloq. 10 (2003), 229-238. Zbl 1043.16012, MR 1980442
Reference: [14] Chiang-Hsieh, H. J., Smith, N. O., Wang, H. J.: Commutative rings with toroidal zero-divisor graphs.Houston J. Math. 36 (2010), 1-31. Zbl 1226.05095, MR 2610778
Reference: [15] Gagarin, A., Kocay, W.: Embedding graphs containing $K_5$-subdivisions.Ars Comb. 64 (2002), 33-49. MR 1914196
Reference: [16] Kaplansky, I.: Commutative Rings.University of Chicago Press Chicago (1974). Zbl 0296.13001, MR 0345945
Reference: [17] Khashyarmanesh, K., Khorsandi, M. R.: A generalization of the unit and unitary Cayley graphs of a commutative ring.Acta Math. Hung. 137 (2012), 242-253. Zbl 1289.05205, MR 2992542, 10.1007/s10474-012-0224-5
Reference: [18] Li, A., Li, Q.: A kind of graph structure on von-Neumann regular rings.Int. J. Algebra 4 (2010), 291-302. Zbl 1210.16010, MR 2652245
Reference: [19] Maimani, H. R., Wickham, C., Yassemi, S.: Rings whose total graphs have genus at most one.Rocky Mt. J. Math. 42 (2012), 1551-1560. Zbl 1254.05164, MR 3001816, 10.1216/RMJ-2012-42-5-1551
Reference: [20] Smith, N. O.: Planar zero-divisor graphs.Int. J. Commut. Rings 2 (2003), 177-186. Zbl 1165.13305, MR 2387751
Reference: [21] Wang, H. J.: Zero-divisor graphs of genus one.J. Algebra 304 (2006), 666-678. Zbl 1106.13029, MR 2264274, 10.1016/j.jalgebra.2006.01.057
Reference: [22] White, A. T.: Graphs, Groups and Surfaces.North-Holland Mathematics Studies 8 North-Holland, Amsterdam (1973). Zbl 0268.05102, MR 0780555
Reference: [23] Wickham, C.: Classification of rings with genus one zero-divisor graphs.Commun. Algebra 36 (2008), 325-345. Zbl 1137.13015, MR 2387525, 10.1080/00927870701713089
.

Files

Files Size Format View
CzechMathJ_66-2016-2_2.pdf 259.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo