| Title:
             | 
Quadratic differentials $(A(z-a)(z-b)/(z-c)^{2}) {\rm d} z^{2}$ and algebraic Cauchy transform (English) | 
| Author:
             | 
Atia, Mohamed Jalel | 
| Author:
             | 
Thabet, Faouzi | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
66 | 
| Issue:
             | 
2 | 
| Year:
             | 
2016 | 
| Pages:
             | 
351-363 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We discuss the representability almost everywhere (a.e.) in $\mathbb {C}$ of an irreducible algebraic function as the Cauchy transform of a signed measure supported on a finite number of compact semi-analytic curves and a finite number of isolated points. This brings us to the study of trajectories of the particular family of quadratic differentials $A(z-a)(z-b)\*(z-c)^{-2} {\rm d} z^{2}$. More precisely, we give a necessary and sufficient condition on the complex numbers $a$ and $b$ for these quadratic differentials to have finite critical trajectories. We also discuss all possible configurations of critical graphs. (English) | 
| Keyword:
             | 
algebraic equation | 
| Keyword:
             | 
Cauchy transform | 
| Keyword:
             | 
quadratic differential | 
| MSC:
             | 
28A99 | 
| MSC:
             | 
30L05 | 
| idZBL:
             | 
Zbl 06604471 | 
| idMR:
             | 
MR3519606 | 
| DOI:
             | 
10.1007/s10587-016-0260-3 | 
| . | 
| Date available:
             | 
2016-06-16T12:43:02Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/145728 | 
| . | 
| Reference:
             | 
[1] Atia, M. J., Martínez-Finkelshtein, A., Martínez-González, P., Thabet, F.: Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters.J. Math. Anal. Appl. 416 (2014), 52-80. Zbl 1295.30015, MR 3182748, 10.1016/j.jmaa.2014.02.040 | 
| Reference:
             | 
[2] Jenkins, J. A.: Univalent Functions and Conformal Mapping.Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. Reihe: Moderne Funktionentheorie Springer, Berlin (1958). Zbl 0083.29606, MR 0096806 | 
| Reference:
             | 
[3] Kuijlaars, A. B. J., McLaughlin, K. T.-R.: Asymptotic zero behavior of Laguerre polynomials with negative parameter.Constructive Approximation 20 (2004), 497-523. Zbl 1069.33008, MR 2078083, 10.1007/s00365-003-0536-3 | 
| Reference:
             | 
[4] Martínez-Finkelshtein, A., Martínez-González, P., Orive, R.: On asymptotic zero distribution of Laguerre and generalized Bessel polynomials with varying parameters.J. Comput. Appl. Math. 133 (2001), 477-487 Conf. Proc. (Patras, 1999), Elsevier (North-Holland), Amsterdam. Zbl 0990.33009, MR 1858305, 10.1016/S0377-0427(00)00654-3 | 
| Reference:
             | 
[5] Pommerenke, C.: Univalent Functions. With a Chapter on Quadratic Differentials by Gerd Jensen.Studia Mathematica/Mathematische Lehrbücher. Band 25. Vandenhoeck & Ruprecht, Göttingen (1975). Zbl 0298.30014, MR 0507768 | 
| Reference:
             | 
[6] Pritsker, I. E.: How to find a measure from its potential.Comput. Methods Funct. Theory 8 597-614 (2008). Zbl 1160.31004, MR 2419497, 10.1007/BF03321707 | 
| Reference:
             | 
[7] Strebel, K.: Quadratic Differentials.Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Vol. 5 Springer, Berlin (1984). Zbl 0547.30038, MR 0743423 | 
| Reference:
             | 
[8] Vasil'ev, A.: Moduli of Families of Curves for Conformal and Quasiconformal Mappings.Lecture Notes in Mathematics 1788 Springer, Berlin (2002). Zbl 0999.30001, MR 1929066, 10.1007/b83857 | 
| . |