[2] Ash, R., Doléans-Dade, C.: 
Probability and Measure Theory. Academic Press, San Diego 2000. 
MR 1810041 | 
Zbl 0944.60004[4] Bertsekas, D., Shreve, S.: 
Stochastic Optimal Control: The Discrete Time Case. Athena Scientific, Massachusetts 1996. 
MR 0511544 | 
Zbl 0633.93001[6] Black, F., Karasinski, P.: 
Bond and option pricing when short rates are lognormal. Financ. Anal. J. 47 (1991), 4, 52-59. 
DOI 10.2469/faj.v47.n4.52[8] Vecchia, E. Della, Marco, S. Di, Vidal, F.: Dynamic programming for variable discounted Markov decision problems. In: Jornadas Argentinas de Informática e Investigación Operativa (43JAIIO) - XII Simposio Argentino de Investigación Operativa (SIO), Buenos Aires, 2014, pp. 50-62.
[13] González-Hernández, J., López-Martínez, R., Minjarez-Sosa, A.: 
Adaptive policies for stochastic systems under a randomized discounted cost criterion. Bol. Soc. Mat. Mex. 14 (2008), 3, 149-163. 
MR 2667162 | 
Zbl 1201.93130[14] González-Hernández, J., López-Martínez, R., Minjarez-Sosa, A.: 
Approximation, estimation and control of stochastic systems under a randomized discounted cost criterion. Kybernetika 45 (2008), 5, 737-754. 
MR 2599109 | 
Zbl 1190.93105[15] Guo, X., Hernández-Del-Valle, A., Hernández-Lerma, O.: 
First passage problems for a non-stationary discrette-time stochastic control systems. Eur. J. Control 15 (2012), 7, 528-538. 
DOI 10.3166/ejc.18.528-538 | 
MR 3086896[18] Hinderer, K.: 
Foundations of non-stationary dynamical programming with discrete time parameter. In: Lecture Notes Operations Research (M. Bechmann and H. Künzi, eds.), Springer-Verlag 33, Zürich 1970. 
DOI 10.1007/978-3-642-46229-0 | 
MR 0267890[20] Hull, J.: Options, Futures and other Derivatives. Sixth edition. Prentice Hall, New Jersey 2006.
[21] Hull, J., White, A.: 
Pricing interest rate derivative securities. Rev. Financ. Stud. 3 (1990), 573-592. 
DOI 10.1093/rfs/3.4.573[23] Rendleman, R., Bartter, B.: 
The pricing of options on debt securities. J. Financ. Quant. Anal. 15 (1980), 11-24. 
DOI 10.2307/2979016