Previous |  Up |  Next


Title: A Linguistic Fuzzy Approach to the Consensus Reaching in Multiple Criteria Group Decision-making Problems (English)
Author: Sukač, Vojtěch
Author: Talašová, Jana
Author: Stoklasa, Jan
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 55
Issue: 1
Year: 2016
Pages: 133-150
Summary lang: English
Category: math
Summary: The paper introduces a new method of reaching a consensus in multiple criteria group decision-making under fuzziness. This model is based on the general definition of the ‘soft’ consensus introduced by Kacprzyk and Fedrizzi in 1986. The fuzzy evaluations of alternatives express degrees of fulfillment of the given goals by the respective alternatives for each expert. The selection of the best alternative is based on the fuzzy consensus by experts. For this purpose a set of alternatives which are good enough with respect to the most of relevant experts is identified. From this set the alternative with the highest center of gravity (defuzzified fuzzy evaluation) is selected as the most promising one. (English)
Keyword: Fuzzy
Keyword: group decision-making
Keyword: multicriteria evaluation
Keyword: fuzzy weighted average
Keyword: consensus reaching
Keyword: fuzzy quantifiers
MSC: 90B50
idZBL: Zbl 1366.90120
idMR: MR3674608
Date available: 2016-08-30T12:06:34Z
Last updated: 2018-01-10
Stable URL:
Reference: [1] Alonso, S.: Group Decision Making with Incomplete Fuzzy Preference Relations.. Ph.D. Thesis, Universidad de Granada, Granada, 2006.
Reference: [2] Arrow, K. J.: Social Choice and Individual Values.. 2nd edition, Wiley, New York, 1963.
Reference: [3] Bouyssou, D., Dubois, D., Pirlot, M., Prade, H.: Decision-making Process: Concepts and Methods.. Wiley, New York, 2009.
Reference: [4] Bustince, H.: Fuzzy Sets and Their Extensions: Representation, Aggregation and Models.. STUDFUZZ 220, Springer, Berlin, Heidelberg, 2008. Zbl 1130.68004
Reference: [5] Cabrerizo, F. J., Pérez, I. J., Herrera-Viedma, E.: Managing the consensus in group decision making in an unbalanced fuzzy linguistic context with incomplete information.. Knowledge-Based Systems 23 (2010), 169–181. 10.1016/j.knosys.2009.11.019
Reference: [6] Çağman, N., Wang, X.: A new group decision-making method based on fuzzy set operations.. European Journal of Pure and Applied Mathematics 4, 1 (2011), 42–49. Zbl 1231.91063
Reference: [7] Calvo, T., Beliakov, G.: Aggregation functions bsed on penalties.. Fuzzy Sets and Systems 161 (2010), 1420–1436. MR 2606423, 10.1016/j.fss.2009.05.012
Reference: [8] Eklund, P., Rusinowska, A., De Swart, H.: Consensus reaching in committees.. European Journal of Operational Research 178 (2007), 185–193. Zbl 1102.90337, 10.1016/j.ejor.2005.11.012
Reference: [9] Kacprzyk, J., Fedrizzi, M.: ‘Soft’ consensus measures for monitoring real consensus reaching processes under fuzzy preferences.. Control and Cybernetics 15 (1986), 309–323. MR 0906878
Reference: [10] Kacprzyk, J., Roubens, M.: Non-Conventional Preference Relations in Decision Making.. Springer-Verlag, Berlin, Heidelberg, 1988. Zbl 0642.00025, MR 1133644
Reference: [11] Kacprzyk, J., Fedrizzi, M., Nurmi, H.: ‘Soft’ degrees of consensus under fuzzy preferences and fuzzy majorities.. In: J., Kacprzyk et al. (eds.): Consensus under Fuzziness, Springer Science & Business Media, New York, 1997, 55–83.
Reference: [12] Kacprzyk, J., Nurmi, H., Fedrizzi, M.: Consensus under Fuzziness.. Springer Science & Business Media, New York, 1997. Zbl 0882.00024
Reference: [13] Klamler, C.: The Dodgson ranking and the Borda count: a binary comparison.. Mathematical Social Sciences 48 (2004), 103–108. Zbl 1091.91020, MR 2054547, 10.1016/j.mathsocsci.2003.11.003
Reference: [14] González-Pachón, J., Romero, C.: Distance-based consensus methods: a goal programming approach.. Omega, International Journal of Management Science 27 (1999), 341–347. 10.1016/S0305-0483(98)00052-8
Reference: [15] Herrera-Viedma, E.: Consensual Processes.. STUDFUZZ 267, Springer-Verlag, Berlin, Heidelberg, 2011.
Reference: [16] Herrera, F., Herrera-Viedma, E., Verdegay, J. L.: A rational consensus model in group decision making using linguistic assessments.. Fuzzy Sets and Systems 88 (1997), 31–49. 10.1016/S0165-0114(96)00047-4
Reference: [17] Herrera, F., Herrera-Viedma, E., Verdegay, J. L.: A model of consensus in group decision making using linguistic assessments.. Fuzzy Sets and Systems 78 (1996), 73–87. MR 1376216, 10.1016/0165-0114(95)00107-7
Reference: [18] Holeček, P., Talašová, J., Müller, I.: Fuzzy methods of multiple-criteria evaluation and their software implementation.. In: V. K., Mago, N., Bhatia (eds.): Cross-Disciplinary Applications of Artificial Intelligence and Pattern Recognition: Advancing Technologies, IGI Global 2012, 388–411.
Reference: [19] Kelly, J. S.: Social Choice Theory.. Springer-Verlag, Berlin, Heidelberg, New York, 1988. Zbl 0689.90002
Reference: [20] Maskin, E.: The Arrow Impossibility Theorem.. Columbia University Press, New York, 2014.
Reference: [21] Pavlačka, O., Talašová, J.: Fuzzy vectors of normalized weights and their application in decision making models.. Aplimat – Journal of Applied Mathematics 1, 1 (2008), 451–462.
Reference: [22] Pavlačka, O., Talašová, J.: Fuzzy vectors as a tool for modeling uncertain multidimensional quantities.. Fuzzy Sets and Systems 161 (2010), 1585–1603. Zbl 1186.90144, MR 2608263, 10.1016/j.fss.2009.12.008
Reference: [23] Pavlačka, O.: Modeling uncertain variables of the weighted average operation by fuzzy vectors.. Information Sciences 181 (2011), 4969–4992. Zbl 1241.68117, MR 2832874, 10.1016/j.ins.2011.06.022
Reference: [24] Slowiński, R.: Fuzzy Sets in Decision Analysis, Operations Research and Statistics.. Springer Science & Business Media, New York, 1998. Zbl 0905.00031, MR 1672362
Reference: [25] Talašová, J.: Fuzzy metody vícekriteriálního hodnocení a rozhodování.. Vydavatelství UP, Olomouc, 2003, (in Czech).
Reference: [26] Talašová, J., Pavlačka, O.: Fuzzy probability spaces and their applications in decision making.. Austrian Journal of Statistics. 35, 2 & 3 (2006), 347–356.
Reference: [27] Zadeh, L. A.: Fuzzy sets.. Information and Control 8, 3 (1965), 338–353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
Reference: [28] Zadeh, L. A.: The concept of a linguistic variable and its application to approximate reasoning-I.. Information Sciences 8, 3 (1975), 199–249. Zbl 0397.68071, MR 0386369


Files Size Format View
ActaOlom_55-2016-1_15.pdf 510.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo