Previous |  Up |  Next

Article

Title: $\mathfrak{g}$-quasi-Frobenius Lie algebras (English)
Author: Pham, David N.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 52
Issue: 4
Year: 2016
Pages: 233-262
Summary lang: English
.
Category: math
.
Summary: A Lie version of Turaev’s $\overline{G}$-Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a $\mathfrak{g}$-quasi-Frobenius Lie algebra for $\mathfrak{g}$ a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra $(\mathfrak{q},\beta )$ together with a left $\mathfrak{g}$-module structure which acts on $\mathfrak{q}$ via derivations and for which $\beta $ is $\mathfrak{g}$-invariant. Geometrically, $\mathfrak{g}$-quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic Lie groups with an action by a Lie group $G$ which acts via symplectic Lie group automorphisms. In addition to geometry, $\mathfrak{g}$-quasi-Frobenius Lie algebras can also be motivated from the point of view of category theory. Specifically, $\mathfrak{g}$-quasi Frobenius Lie algebras correspond to quasi Frobenius Lie objects in $\mathbf{Rep}(\mathfrak{g})$. If $\mathfrak{g}$ is now equipped with a Lie bialgebra structure, then the categorical formulation of $\overline{G}$-Frobenius algebras given in [16] suggests that the Lie version of a $\overline{G}$-Frobenius algebra is a quasi-Frobenius Lie object in $\mathbf{Rep}(D(\mathfrak{g}))$, where $D(\mathfrak{g})$ is the associated (semiclassical) Drinfeld double. We show that if $\mathfrak{g}$ is a quasitriangular Lie bialgebra, then every $\mathfrak{g}$-quasi-Frobenius Lie algebra has an induced $D(\mathfrak{g})$-action which gives it the structure of a $D(\mathfrak{g})$-quasi-Frobenius Lie algebra. (English)
Keyword: symplectic Lie groups
Keyword: quasi-Frobenius Lie algebras
Keyword: Lie bialgebras
Keyword: Drinfeld double
Keyword: group actions
MSC: 18A05
MSC: 18E05
MSC: 22E60
MSC: 22Exx
MSC: 53D05
idZBL: Zbl 06674902
idMR: MR3610652
DOI: 10.5817/AM2016-4-233
.
Date available: 2016-12-20T21:51:01Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145931
.
Reference: [1] Abrams, L.: Two dimensional topological quantum field theories and Frobenius algebras.J. Knot Theory Ramifications 5 (1996), 569–587. Zbl 0897.57015, MR 1414088, 10.1142/S0218216596000333
Reference: [2] Agaoka, Y.: Uniqueness of left invariant symplectic structures on the affine Lie group.Proc. Amer. Math. Soc. 129 (9) (2001), 2753–2762, (electronic). Zbl 1021.53052, MR 1838799, 10.1090/S0002-9939-01-05828-2
Reference: [3] Atiyah, M.F.: Topological quantum field theory.Publ. Math. Inst. Hautes Études Sci. 68 (1988), 175–186. MR 1001453, 10.1007/BF02698547
Reference: [4] Baues, O., Cortés, V.: Symplectic Lie Groups I–III.arXiv:1307.1629.
Reference: [5] Boyom, N.: Models for solvable symplectic Lie groups.Indiana Univ. Math. J. 42 (4) (1993), 1149–1168. Zbl 0846.58023, MR 1266088, 10.1512/iumj.1993.42.42053
Reference: [6] Burde, D.: Characteristically nilpotent Lie algebras and symplectic structures.Forum Math. 18 (5) (2006), 769–787. Zbl 1206.17009, MR 2265899, 10.1515/FORUM.2006.038
Reference: [7] Chari, V., Pressley, A.: A Guide to Quantum Groups.Cambridge University Press, 1994. Zbl 0839.17009, MR 1300632
Reference: [8] Chu, B.: Symplectic homogenous spaces.Trans. Amer. Math. Soc. 197 (1974), 145–159. MR 0342642, 10.1090/S0002-9947-1974-0342642-7
Reference: [9] Drinfeld, V.G.: Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the classical Yang-Baxter equations.Dokl. Akad. Nauk SSSR 268 (2) (1983), 285–287, (Russian). Zbl 0526.58017, MR 0688240
Reference: [10] Etingof, P., Schiffman, O.: Lectures on Quantum Groups.Lect. Math. Phys., Int. Press, 1998. MR 1698405
Reference: [11] Golubitsky, M., Guillemin, V.: Stable mappings and their singularities.Grad. Texts in Math., vol. 14, Springer, Berlin, 1973. Zbl 0294.58004, MR 0341518, 10.1007/978-1-4615-7904-5_3
Reference: [12] Goyvaerts, I., Vercruysse, J.: A Note on the Categorification of Lie Algebras.Lie Theory and Its Applications in Physics, Springer Proceedings in Math. $\&$ Stat., 2013, pp. 541–550. Zbl 1280.17027, MR 3070680
Reference: [13] Guillemin, V., Pollack, A.: Differential Topology.Prentice-Hall, 1974. Zbl 0361.57001, MR 0348781
Reference: [14] Helgason, S.: Differential Geometry, Lie groups, and Symmetric Spaces.Pure Appl. Math., 1978. Zbl 0451.53038, MR 1834454
Reference: [15] Kaufmann, R.: Orbifolding Frobenius algebras.Internat. J. Math. 14 (6) (2003), 573–617. Zbl 1083.57037, MR 1997832, 10.1142/S0129167X03001831
Reference: [16] Kaufmann, R., Pham, D.: The Drinfel’d double and twisting in stringy orbifold theory.Internat. J. Math. 20 (5) (2009), 623–657. Zbl 1174.14048, MR 2526310, 10.1142/S0129167X09005431
Reference: [17] Kosmann-Schwarzbach, Y.: Poisson-Drinfel’d groups.Publ. Inst. Rech. Math. Av. 5 (12) (1987).
Reference: [18] Kosmann-Schwarzbach, Y.: Lie Bialgebras, Poisson Lie groups and dressing transformations.Integrability of nonlinear systems (Pondicherry, 1996), vol. 495, Lecture Notes in Phys., 1997, pp. 104–170. Zbl 1078.37517, MR 1636293
Reference: [19] Lee, J.: Introduction to Smooth Manifolds.Springer-Verlag, New York Inc., 2003. MR 1930091
Reference: [20] Lu, J., Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions.J. Differential Geom. 31 (2) (1990), 501–526. Zbl 0673.58018, MR 1037412, 10.4310/jdg/1214444324
Reference: [21] Mikami, K.: Symplectic and Poisson structures on some loop groups.Contemp. Math. 179 (1994), 173–192. Zbl 0820.58021, MR 1319608, 10.1090/conm/179/01940
Reference: [22] Ooms, A.: On Lie algebras having a primitive universal enveloping algebra.J. Algebra 32 (1974), 488–500. Zbl 0355.17014, MR 0387365, 10.1016/0021-8693(74)90154-9
Reference: [23] Ooms, A.: On Frobenius Lie algebras.Comm. Algebra 8 (1) (1980), 13–52. Zbl 0421.17004, MR 0556091, 10.1080/00927878008822445
Reference: [24] Semenov-Tian-Shansky, M.A.: What is a classical $r$-matrix?.Funct. Anal. Appl. 17 (1983), 259–272. 10.1007/BF01076717
Reference: [25] Turaev, V.: Homotopy field theory in dimension 2 and group-algebras.arXiv.org:math/9910010, (1999).
Reference: [26] Vinberg, E.B.: A course in algebra.Graduate Studies in Math., vol. 56, AMS, 2003. Zbl 1016.00003, MR 1974508
Reference: [27] Warner, F.: Foundations of Differentiable Manifolds and Lie Groups.Springer, 1983. Zbl 0516.58001, MR 0722297
Reference: [28] Witten, E.: Topological quantum field theory.Comm. Math. Phys. 117 (1988), 353–386. Zbl 0656.53078, MR 0953828, 10.1007/BF01223371
.

Files

Files Size Format View
ArchMathRetro_052-2016-4_4.pdf 638.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo