Previous |  Up |  Next


Title: Stabilization of nonlinear stochastic systems without unforced dynamics via time-varying feedback (English)
Author: Florchinger, Patrick
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 6
Year: 2016
Pages: 988-1002
Summary lang: English
Category: math
Summary: In this paper we give sufficient conditions under which a nonlinear stochastic differential system without unforced dynamics is globally asymptotically stabilizable in probability via time-varying smooth feedback laws. The technique developed to design explicitly the time-varying stabilizers is based on the stochastic Lyapunov technique combined with the strategy used to construct bounded smooth stabilizing feedback laws for passive nonlinear stochastic differential systems. The interest of this work is that the class of stochastic systems considered in this paper contains a lot of systems which cannot be stabilized via time-invariant feedback laws. (English)
Keyword: stochastic differential systems
Keyword: smooth time–varying feedback law
Keyword: global asymptotic stability in probability
MSC: 60H10
MSC: 93C10
MSC: 93D05
MSC: 93D15
MSC: 93E15
idZBL: Zbl 06707384
idMR: MR3607858
DOI: 10.14736/kyb-2016-6-0988
Date available: 2017-02-13T11:49:44Z
Last updated: 2018-01-10
Stable URL:
Reference: [1] Abedi, F., Hassan, M. A., Arifin, N.: Control Lyapunov function for feedback stabilization of affine in the control stochastic time-varying systems..Int. J. Math. Anal. 5 (2011), 175-188. Zbl 1238.93079
Reference: [2] Abedi, F., Leong, W. J., Chaharborj, S. S.: On the aymptotic and practical stability of stochastic control systems..Math. Problems in Engineering 2013 (2013), 560647. 10.1155/2013/560647
Reference: [3] Abedi, F., Leong, W. J., Abedi, M.: Lyapunov characterization of the stability of stochastic control systems..Math. Problems in Engineering 2015 (2015), 584935. MR 3319255, 10.1155/2015/584935
Reference: [4] Brockett, R.: Asymptotic stability and feedback stabilization..In: Differential Geometric Control Theory (R. Brockett, R. Millman and H. Sussmann, eds.), Birkhäuser, Basel, Boston 1983, pp. 181-191. Zbl 0528.93051, MR 0708502
Reference: [5] Campion, G., d'Andréa-Novel, B., Bastin, G.: Controllability and state feedback stabilization of nonholonomic mechanical systems..In: International Workshop in Adaptive and Nonlinear Control: Issues in Robotics, Springer-Verlag 1990. 10.1007/bfb0039268
Reference: [6] Coron, J. M.: Global asymptotic stabilization for controllable systems without drift..Math. Control Signal Systems 5 (1992), 295-312. Zbl 0760.93067, MR 1164379, 10.1007/bf01211563
Reference: [7] Coron, J. M., Pomet, J. B.: A remark on the design of time-varying stabilization feedback laws for controllable systems without drift..In: Proc. IFAC NOLCOS, Bordeaux 1992, pp. 413-417.
Reference: [8] Florchinger, P.: Lyapunov-like techniques for stochastic stability..SIAM J. Control Optim. 33 (1995), 4, 1151-1169. Zbl 0845.93085, MR 1339059, 10.1137/s0363012993252309
Reference: [9] Florchinger, P.: A stochastic Jurdjevic-Quinn theorem..SIAM J. Control Optim. 41 (2002), 83-88. Zbl 1014.60062, MR 1920157, 10.1137/s0363012900370788
Reference: [10] Florchinger, P.: Global asymptotic stabilization in probability of nonlinear stochastic systems via passivity..Int. J. Control 89 (2016), 1406-1415. MR 3494626, 10.1080/00207179.2015.1132009
Reference: [11] Florchinger, P.: Time-varying stabiliziers for stochastic systems with no unforced dynamics..Preprint 2016.
Reference: [12] Jurdjevic, V., Quinn, J. P.: Controllability and stability..J. Differential Equations 28 (1978), 381-389. Zbl 0417.93012, MR 0494275, 10.1016/0022-0396(78)90135-3
Reference: [13] Khasminskii, R. Z.: Stochastic Stability of Differential Equations..Sijthoff and Noordhoff, Alphen aan den Rijn 1980. Zbl 1241.60002
Reference: [14] Kushner, H. J.: Stochastic stability..In: Stability of Stochastic Dynamical Systems (R. Curtain, ed.), Lecture Notes in Mathematics 294, Springer Verlag, Berlin, Heidelberg, New York 1972, pp. 97-124. Zbl 0275.93055, MR 0406657, 10.1007/bfb0064937
Reference: [15] Lin, W.: Time-varying feedback control of nonaffine nonlinear systems without drift..Systems Control Lett. 29 (1996), 101-110. Zbl 0866.93082, MR 1420407, 10.1016/s0167-6911(96)00050-3
Reference: [16] Pomet, J. B.: Explicit design of time-varying stabilizing control law for a class of controllable systems without drift..Systems Control Lett. 18 (1992), 147-158. MR 1149359, 10.1016/0167-6911(92)90019-o
Reference: [17] Samson, C.: Time-varying Stabilization of a Nonholonomic Car-like Mobile Robot..Repport de recherche 1515, INRIA Sophia-Antipolis 1991.
Reference: [18] Sepulchre, R., Campion, G., Wertz, V.: Some remarks about periodic feedback stabilization..In: Proc. IFAC NOLCOS, Bordeaux 1992, pp. 418-423.
Reference: [19] Sontag, E.: Feedback stabilization of nonlinear systems..In: Robust Control of Linear Systems and Nonlinear Control (M. K. Kaashoek et al., eds.), Birkhäuser, Boston 1990, pp. 61-81. Zbl 0735.93063, MR 1115377, 10.1007/978-1-4612-4484-4_4
Reference: [20] D.Sontag, E., Sussmann, H. J.: Remarks on continuous feedback..In: Proc. 19th IEEE Conference on Decision and Control, Albuquerque 1980, pp. 916-921. 10.1109/cdc.1980.271934


Files Size Format View
Kybernetika_52-2016-6_9.pdf 328.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo