| Title:
             | 
Homogeneous variational problems and Lagrangian sections (English) | 
| Author:
             | 
Saunders, D.J. | 
| Language:
             | 
English | 
| Journal:
             | 
Communications in Mathematics | 
| ISSN:
             | 
1804-1388 | 
| Volume:
             | 
24 | 
| Issue:
             | 
2 | 
| Year:
             | 
2016 | 
| Pages:
             | 
115-123 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We define a canonical line bundle over the slit tangent bundle of a manifold, and define a Lagrangian section to be a homogeneous section of this line bundle. When a regularity condition is satisfied the Lagrangian section gives rise to local Finsler functions. For each such section we demonstrate how to construct a canonically parametrized family of geodesics, such that the geodesics of the local Finsler functions are reparametrizations. (English) | 
| Keyword:
             | 
Finsler geometry | 
| Keyword:
             | 
line bundle | 
| Keyword:
             | 
geodesics | 
| MSC:
             | 
53C22 | 
| MSC:
             | 
53C60 | 
| idZBL:
             | 
Zbl 1360.53077 | 
| idMR:
             | 
MR3590209 | 
| . | 
| Date available:
             | 
2017-02-28T16:41:21Z | 
| Last updated:
             | 
2018-01-10 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/146015 | 
| . | 
| Reference:
             | 
[1] Chern, S.-S.: Finsler geometry is just Riemannian geometry without the quadratic restriction.Not. A.M.S., 43, 9, 1996, 959-963,  Zbl 1044.53512, MR 1400859 | 
| Reference:
             | 
[2] Crampin, M.: Some remarks on the Finslerian version of Hilbert's Fourth Problem.Houston J. Math., 37, 2, 2011, 369-391,  Zbl 1228.53085, MR 2794554 | 
| Reference:
             | 
[3] Crampin, M., Mestdag, T., Saunders, D.J.: The multiplier approach to the projective Finsler metrizability problem.Diff. Geom. Appl., 30, 6, 2012, 604-621,  Zbl 1257.53105, MR 2996856, 10.1016/j.difgeo.2012.07.004 | 
| Reference:
             | 
[4] Crampin, M., Saunders, D.J.: Projective connections.J. Geom. Phys., 57, 2, 2007, 691-727,  Zbl 1114.53014, MR 2271212, 10.1016/j.geomphys.2006.03.007 | 
| Reference:
             | 
[5] Hebda, J., Roberts, C.: Examples of Thomas--Whitehead projective connections.Diff. Geom. Appl., 8, 1998, 87-104,  Zbl 0897.53009, MR 1601526 | 
| Reference:
             | 
[6] Massa, E., Pagani, E., Lorenzoni, P.: On the gauge structure of classical mechanics.Transport Theory and Statistical Physics, 29, 1--2, 2000, 69-91,  Zbl 0968.70014, MR 1774182, 10.1080/00411450008205861 | 
| Reference:
             | 
[7] Roberts, C.: The projective connections of T.Y. Thomas and J.H.C. Whitehead applied to invariant connections.Diff. Geom. Appl., 5, 1995, 237-255,  Zbl 0833.53023, MR 1353058, 10.1016/0926-2245(95)92848-Y | 
| Reference:
             | 
[8] Thomas, T.Y.: A projective theory of affinely connected manifolds.Math. Zeit., 25, 1926, 723-733,  MR 1544836, 10.1007/BF01283864 | 
| . |