Previous |  Up |  Next

Article

Keywords:
Grothendieck sets; property $wGP$
Summary:
For Banach spaces $X$ and $Y$, let $K_{w^*}(X^*,Y)$ denote the space of all $w^* - w$ continuous compact operators from $X^*$ to $Y$ endowed with the operator norm. A Banach space $X$ has the $wGP$ property if every Grothendieck subset of $X$ is relatively weakly compact. In this paper we study Banach spaces with property $wGP$. We investigate whether the spaces $K_{w^*}(X^*, Y)$ and $X\otimes_\epsilon Y$ have the $wGP$ property, when $X$ and $Y$ have the $wGP$ property.
References:
[1] Bourgain J.: New Classes of $\mathcal{L}_p$-spaces. Lecture Notes in Mathematics, 889, Springer, Berlin-New York, 1981. MR 0639014
[2] Bourgain J., Diestel J.: Limited operators and strict cosingularity. Math. Nachr. 119 (1984), 55–58. DOI 10.1002/mana.19841190105 | MR 0774176 | Zbl 0601.47019
[3] Bessaga C., Pelczynski A.: On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958), 151–174. MR 0115069 | Zbl 0084.09805
[4] Collins H.S., Ruess W.: Weak compactness in the space of compact operators of vector valued functions. Pacific J. Math. 106 (1983), 45–71. DOI 10.2140/pjm.1983.106.45 | MR 0694671
[5] Diestel J.: Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92, Springer, Berlin, 1984. MR 0737004
[6] Diestel J.: A survey of results related to the Dunford-Pettis property. Contemporary Math. 2 (1980), 15–60. DOI 10.1090/conm/002/621850 | MR 0621850 | Zbl 0571.46013
[7] Diestel J., Uhl J.J., Jr.: Vector measures. Math. Surveys, 15, American Mathematical Society, Providence, RI, 1977. MR 0453964 | Zbl 0521.46035
[8] Cembranos P., Mendoza J.: Banach Spaces of Vector-Valued Functions. Lecture Notes in Mathematics, 1676, Springer, Berlin, 1997. MR 1489231 | Zbl 0902.46017
[9] Domanski P., Lindstrom M., Schluchtermann G.: Grothendieck operators on tensor products. Proc. Amer. Math. Soc. 125 (1997), 2285–2291. DOI 10.1090/S0002-9939-97-03763-5 | MR 1372028 | Zbl 0888.47013
[10] Drewnowski L.: On Banach spaces with the Gelfand-Phillips property. Math. Z. 193 (1986), 405–411. DOI 10.1007/BF01229808 | MR 0862887 | Zbl 0689.46004
[11] Drewnowski L., Emmanuele G.: On Banach spaces with the Gelfand-Phillips property II. Rend. Circolo Mat. Palermo 38 (1989), 377–391. DOI 10.1007/BF02850021 | MR 1053378 | Zbl 0689.46004
[12] Emmanuele G.: Banach spaces in which Dunford-Pettis sets are relatively compact. Arch. Math. 58 (1992), 477–485. DOI 10.1007/BF01190118 | MR 1156580 | Zbl 0761.46010
[13] Emmanuele G.: The (BD) property in $L^1(\mu,E)$. Indiana Univ. Math. J. 36 (1987), 229–230. MR 0877000
[14] Emmanuele G.: A dual characterization of Banach spaces not containing $\ell^1$. Bull. Polish Acad. Sci. Math. 34 (1986), 155–160. MR 0861172
[15] Fabian M., Habla P., Hájek P., Montesinos V., Zizler V.: Banach Space Theory. The Basis for Linear and Nonlinear Analysis. CMS Books in Mathematics, Springer, New York, 2011. MR 2766381
[16] Fabian M.J.: Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces. Canad. Math. Soc. Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1997. MR 1461271 | Zbl 0883.46011
[17] Ghenciu I.: Weak precompactness and property $(V^*)$. Colloq. Math. 138 (2014), no. 2, 255–269. DOI 10.4064/cm138-2-10 | MR 3312111 | Zbl 1330.46023
[18] Ghenciu I., Lewis P.: Completely continuous operators. Colloq. Math. 126 (2012), no. 2, 231–256, doi:10.4064/cm126-2-7. DOI 10.4064/cm126-2-7 | MR 2924252 | Zbl 1256.46009
[19] Ghenciu I., Lewis P.: The embeddability of $c_0$ in spaces of operators. Bull. Polish. Acad. Sci. Math. 56 (2008), 239–256. DOI 10.4064/ba56-3-7 | MR 2481977 | Zbl 1167.46016
[20] Ghenciu I., Lewis P.: Almost weakly compact operators. Bull. Polish. Acad. Sci. Math. 54 (2006), 237–256. DOI 10.4064/ba54-3-6 | MR 2287199 | Zbl 1118.46016
[21] Hagler J., Odell E.: A Banach space not containing $\ell_1$, whose dual ball is not $weak^*$ sequentially compact. Illinois J. Math 22 (1978), 290–294. MR 0482087 | Zbl 0391.46015
[22] Haydon R., Levy M., Odell E.: On sequences without weak$^*$ convergent convex block subsequences. Proc. Amer. Soc. 101 (1987), 94–98. MR 0883407
[23] Leung D.H.: A Gelfand-Phillips property with respect to the weak topology. Math. Nachr. 149 (1990), 177–181. DOI 10.1002/mana.19901490114 | MR 1124803 | Zbl 0765.46007
[24] Lindenstrauss J.: On nonseparable reflexive Banach spaces. Bull. Amer. Math. Soc. 72 (1966), 967–970. DOI 10.1090/S0002-9904-1966-11606-3 | MR 0205040 | Zbl 0156.36403
[25] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces II. Ergebnisse der Mathematik und ihrer Grenzgebiete, 97, Springer, Berlin-Heidelberg-New York, 1979. MR 0540367 | Zbl 0403.46022
[26] Pełczyński A.: On Banach spaces containing $L^1(\mu)$. Studia Math. 30 (1968), 231–246. DOI 10.4064/sm-30-2-231-246 | MR 0232195
[27] Pełczyński A.: Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. MR 0149295 | Zbl 0107.32504
[28] Pełczyński A., Semadeni Z.: Spaces of continuous functions III. Studia Math. 18 (1959), 211–222. MR 0092942 | Zbl 0091.27803
[29] Ruess W.: Duality and geometry of spaces of compact operators. Functional Analysis: Surveys and Recent Results III. Proc. 3rd Paderborn Conference 1983, North-Holland Math. Studies, 90, North-Holland, Amsterdam, 1984, pp. 59–78. MR 0761373 | Zbl 0573.46007
[30] Ryan R.A.: Intoduction to Tensor Products of Banach Spaces. Springer, London, 2002. MR 1888309
[31] Schlumprecht T.: Limited sets in Banach spaces. Dissertation, Munich, 1987. Zbl 0689.46005
[32] Ülger A.: Continuous linear operators on $C(K,X)$ and pointwise weakly precompact subsets of $C(K,X)$. Math. Proc. Cambridge Philos. Soc. 111 (1992), 143–150. DOI 10.1017/S0305004100075228 | MR 1131485 | Zbl 0776.47017
Partner of
EuDML logo