Previous |  Up |  Next

Article

Title: Simplices rarely contain their circumcenter in high dimensions (English)
Author: Vatne, Jon Eivind
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 3
Year: 2017
Pages: 213-223
Summary lang: English
.
Category: math
.
Summary: Acute triangles are defined by having all angles less than $\pi /2$, and are characterized as the triangles containing their circumcenter in the interior. For simplices of dimension $n\geq 3$, acuteness is defined by demanding that all dihedral angles between $(n-1)$-dimensional faces are smaller than $\pi /2$. However, there are, in a practical sense, too few acute simplices in general. This is unfortunate, since the acuteness property provides good qualitative features for finite element methods. The property of acuteness is logically independent of the property of containing the circumcenter when the dimension is greater than two. In this article, we show that the latter property is also quite rare in higher dimensions. In a natural probability measure on the set of $n$-dimensional simplices, we show that the probability that a uniformly random $n$-simplex contains its circumcenter is $1/2^n$. (English)
Keyword: simplex
Keyword: circumcenter
Keyword: finite element method
MSC: 52A05
MSC: 52A22
MSC: 52B55
MSC: 60D05
MSC: 65M60
MSC: 65N30
idZBL: Zbl 06738490
idMR: MR3661037
DOI: 10.21136/AM.2017.0187-16
.
Date available: 2017-06-01T14:34:51Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146777
.
Reference: [1] Bertrand, J.: Calcul des probabilités.Gauthier-Villars, Paris (1889),\99999JFM99999 21.0198.01.
Reference: [2] Brandts, J., Korotov, S., Křížek, M.: Dissection of the path-simplex in $\Bbb R^n$ into $n$ path-subsimplices.Linear Algebra Appl. 421 (2007), 382-393. Zbl 1112.51006, MR 2294350, 10.1016/j.laa.2006.10.010
Reference: [3] Brandts, J., Korotov, S., Křížek, M.: A geometric toolbox for tetrahedral finite element partitions.Efficient Preconditioned Solution Methods for Elliptic Partial Differential Equations O. Axelsson, J. Karátson Bentham Science Publishers Ltd. (2011), 103-122. 10.2174/978160805291211101010103
Reference: [4] Ciarlet, P. G.: Basic error estimates for elliptic problems.Handbook of Numerical Analysis. Volume II: Finite Element Methods (Part 1) North-Holland, Amsterdam (1991), 17-351. Zbl 0875.65086, MR 1115237, 10.1016/s1570-8659(05)80039-0
Reference: [5] Hajja, M., Walker, P.: Equifacial tetrahedra.Int. J. Math. Educ. Sci. Technol. 32 (2001), 501-508. Zbl 1011.51007, MR 1847966, 10.1080/00207390110038231
Reference: [6] Hošek, R.: Face-to-face partition of 3D space with identical well-centered tetrahedra.Appl. Math., Praha 60 (2015), 637-651. Zbl 06537666, MR 3436566, 10.1007/s10492-015-0115-5
Reference: [7] Kalai, G.: On low-dimensional faces that high-dimensional polytopes must have.Combinatorica 10 271-280 (1990). Zbl 0721.52008, MR 1092544, 10.1007/BF02122781
Reference: [8] Kopczyński, E., Pak, I., Przytycki, P.: Acute triangulations of polyhedra and $\mathbb{R}^N$.Combinatorica 32 (2012), 85-110. Zbl 1265.52014, MR 2927633, 10.1007/s00493-012-2691-2
Reference: [9] Korotov, S., Křížek, M.: Global and local refinement techniques yielding nonobtuse tetrahedral partitions.Comput. Math. Appl. 50 (2005), 1105-1113. Zbl 1086.65116, MR 2167747, 10.1016/j.camwa.2005.08.012
Reference: [10] Korotov, S., Stańdo, J.: Yellow-red and nonobtuse refinements of planar triangulations.Math. Notes, Miskolc 3 (2002), 39-46. Zbl 1017.65086, MR 1921485, 10.18514/MMN.2002.49
Reference: [11] Křížek, M.: On the maximum angle condition for linear tetrahedral elements.SIAM J. Numer. Anal. 29 (1992), 513-520. Zbl 0755.41003, MR 1154279, 10.1137/0729031
Reference: [12] Křížek, M.: There is no face-to-face partition of $\bold R^5$ into acute simplices.Discrete Comput. Geom. 36 (2006), 381-390 Erratum. Discrete Comput. Geom. 44 2010 484-485 . Zbl 1103.52008, MR 2252110, 10.1007/s00454-006-1244-0
Reference: [13] Muller, M. E.: A note on a method for generating points uniformly on $N$-dimensional spheres.Commun. ACM 2 (1959), 19-20. Zbl 0086.11605, 10.1145/377939.377946
Reference: [14] VanderZee, E., Hirani, A. N., Guoy, D.: Triangulation of simple 3D shapes with well-centered tetrahedra.Proceedings of the 17th International Meshing Roundtable Springer, Berlin (2008), 19-35. 10.1007/978-3-540-87921-3_2
Reference: [15] VanderZee, E., Hirani, A. N., Zharnitsky, V., Guoy, D.: A dihedral acute triangulation of the cube.Comput. Geom. 43 (2010), 445-452. Zbl 1185.65040, MR 2585566, 10.1016/j.comgeo.2009.09.001
.

Files

Files Size Format View
AplMat_62-2017-3_1.pdf 268.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo