Full entry |
PDF
(0.4 MB)
Feedback

Axiom of Choice; weak axioms of choice; linear equations with coefficients in $\mathbb{Z}$; infinite systems of linear equations over $\mathbb{Z}$; non-trivial solution of a system in $\mathbb{Z}$; permutation models of $\mathsf{ZFA}$; symmetric models of $\mathsf{ZF}$

References:

[1] Abian A.: **Generalized completeness theorem and solvability of systems of Boolean polynomial equations**. Z. Math. Log. Grundlagen Math. 16 (1970), 263–264. DOI 10.1002/malq.19700160306 | MR 0277450 | Zbl 0202.00704

[2] Blass A.: **Ramsey's theorem in the hierarchy of choice principles**. J. Symbolic Logic 42 (1977), 387–390. DOI 10.2307/2272866 | MR 0465865 | Zbl 0374.02037

[3] Herrlich H.: **Axiom of Choice**. Lecture Notes in Mathematics, 1876, Springer, Berlin, 2006. MR 2243715 | Zbl 1102.03049

[4] Howard P., Rubin J.E.: **The axiom of choice for well-ordered families and for families of well-orderable sets**. J. Symbolic Logic 60 (1995), no. 4, 1115–1117. DOI 10.2307/2275876 | MR 1367198 | Zbl 0848.03026

[5] Howard P., Rubin J.E.: **Consequences of the Axiom of Choice**. Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, RI, 1998. DOI 10.1090/surv/059 | MR 1637107 | Zbl 0947.03001

[6] Howard P., Solski J.: **The strength of the $\Delta$-system lemma**. Notre Dame J. Formal Logic 34 (1993), no. 1, 100–106. DOI 10.1305/ndjfl/1093634567 | MR 1213850 | Zbl 0781.03037

[7] Howard P., Tachtsis E.: **On vector spaces over specific fields without choice**. Math. Log. Quart. 59 (2013), no. 3, 128–146. DOI 10.1002/malq.201200049 | MR 3066735 | Zbl 1278.03082

[8] Jech T.J.: **The Axiom of Choice**. Studies in Logic and the Foundations of Mathematics, 75, North-Holland, Amsterdam, 1973; reprint: Dover Publications, Inc., New York, 2008. MR 0396271 | Zbl 0259.02052

[9] Jech T.J.: **Set Theory**. The third millennium edition, revised and expanded, Springer Monographs in Mathematics, Springer, Berlin, Heidelberg, 2003. MR 1940513 | Zbl 1007.03002

[10] Kunen K.: **Set Theory. An Introduction to Independence Proofs**. Studies in Logic and the Foundations of Mathematics, 102, North-Holland, Amsterdam, 1980. MR 0597342 | Zbl 0534.03026