Previous |  Up |  Next

Article

Keywords:
sub-Riemannian geometry; curvature; connection; Jacobi fields
Summary:
In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.
References:
[1] Agrachev, A.A.: Some open problems. Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., 5, Springer, Cham, 2014, pp. 1–13. MR 3205092 | Zbl 1292.49040
[2] Agrachev, A.A., Barilari, D., Boscain, U.: Introduction to Riemannian and sub-Riemannian geometry (Lecture Notes). 2015, http://webusers.imj-prg.fr/~davide.barilari/notes.php
[3] Agrachev, A.A., Barilari, D., Rizzi, L.: Curvature: a variational approach. Memoirs of the AMS (in press).
[4] Agrachev, A.A., Barilari, D., Rizzi, L.: Sub-riemannian curvature in contact geometry. J. Geom. Anal. (2016), 1–43, DOI10.1007/s12220-016-9684-0. DOI 10.1007/s12220-016-9684-0 | MR 3606555
[5] Agrachev, A.A., Zelenko, I.: Geometry of Jacobi curves. I. J. Dynam. Control Systems 8 (1) (2002), 93–140. DOI:  http://dx.doi.org/10.1023/A:1013904801414 DOI 10.1023/A:1013904801414 | MR 1874705 | Zbl 1019.53038
[6] Agrachev, A.A., Zelenko, I.: Geometry of Jacobi curves. II. J. Dynam. Control Systems 8 (2) (2002), 167–215, DOI10.1023/A:1015317426164. DOI 10.1023/A:1015317426164 | MR 1896170 | Zbl 1045.53051
[7] Barilari, D., Rizzi, L.: Comparison theorems for conjugate points in sub-Riemannian geometry. ESAIM Control Optim. Calc. Var. 22 (2) (2016), 439–472. DOI 10.1051/cocv/2015013 | MR 3491778 | Zbl 1344.53023
[8] Jean, F.: Control of nonholonomic systems: from sub-Riemannian geometry to motion planning. SpringerBriefs in Mathematics, Springer, Cham, 2014. MR 3308372 | Zbl 1309.93002
[9] Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Vol. I. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1996, Reprint of the 1963 original, A Wiley-Interscience Publication. MR 1393940
[10] Li, C., Zelenko, I.: Jacobi equations and comparison theorems for corank 1 sub-Riemannian structures with symmetries. J. Geom. Phys. 61 (4) (2011), 781–807. DOI 10.1016/j.geomphys.2010.12.009 | MR 2765404 | Zbl 1216.53039
[11] Montgomery, R.: Abnormal minimizers. SIAM J. Control Optim. 32 (6) (1994), 1605–1620. DOI 10.1137/S0363012993244945 | MR 1297101 | Zbl 0816.49019
[12] Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. Mathematical Surveys and Monographs ed., vol. 91, AMS, Providence, RI, 2002. MR 1867362 | Zbl 1044.53022
[13] Rifford, L.: Sub-Riemannian geometry and optimal transport. SpringerBriefs in Mathematics, Springer, Cham, 2014. DOI 10.1007/978-3-319-04804-8 | MR 3308395
[14] Rizzi, L., Silveira, P.: Sub-Riemannian Ricci curvatures and universal diameter bounds for 3-Sasakian manifolds. ArXiv e-prints, Sept. 2015, J. Inst. Math. Jussieu (in press).
[15] Zelenko, I., Li, C.: Differential geometry of curves in Lagrange Grassmannians with given Young diagram. Differential Geom. Appl. 27 (6) (2009), 723–742. DOI 10.1016/j.difgeo.2009.07.002 | MR 2552681 | Zbl 1177.53020
Partner of
EuDML logo