Previous |  Up |  Next

Article

Title: $(m,r)$-central Riordan arrays and their applications (English)
Author: Yang, Sheng-Liang
Author: Xu, Yan-Xue
Author: He, Tian-Xiao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 4
Year: 2017
Pages: 919-936
Summary lang: English
.
Category: math
.
Summary: For integers $m > r \geq 0$, Brietzke (2008) defined the $(m,r)$-central coefficients of an infinite lower triangular matrix $G=(d, h)=(d_{n,k})_{n,k \in \mathbb {N}}$ as $ d_{mn+r,(m-1)n+r}$, with $n=0,1,2,\cdots $, and the $(m,r)$-central coefficient triangle of $G$ as $$ G^{(m,r)} = (d_{mn+r,(m-1)n+k+r})_{n,k \in \mathbb {N}}. $$ It is known that the $(m,r)$-central coefficient triangles of any Riordan array are also Riordan arrays. In this paper, for a Riordan array $G=(d,h)$ with $h(0)=0$ and $d(0), h'(0)\not = 0$, we obtain the generating function of its $(m,r)$-central coefficients and give an explicit representation for the $(m,r)$-central Riordan array $G^{(m,r)}$ in terms of the Riordan array $G$. Meanwhile, the algebraic structures of the $(m,r)$-central Riordan arrays are also investigated, such as their decompositions, their inverses, and their recessive expressions in terms of $m$ and $r$. As applications, we determine the $(m,r)$-central Riordan arrays of the Pascal matrix and other Riordan arrays, from which numerous identities are constructed by a uniform approach. (English)
Keyword: Riordan array
Keyword: central coefficient
Keyword: central Riordan array
Keyword: generating function
Keyword: Fuss-Catalan number
Keyword: Pascal matrix
Keyword: Catalan matrix
MSC: 05A05
MSC: 05A10
MSC: 05A19
MSC: 15A09
idZBL: Zbl 06819563
idMR: MR3736009
DOI: 10.21136/CMJ.2017.0165-16
.
Date available: 2017-11-20T14:52:33Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146957
.
Reference: [1] Andrews, G. H.: Some formulae for the Fibonacci sequence with generalizations.Fibonacci Q. 7 (1969), 113-130. Zbl 0176.32202, MR 0242761
Reference: [2] Barry, P.: On integer-sequence-based constructions of generalized Pascal triangles.J. Integer Seq. 9 (2006), Article 06.2.4, 34 pages. Zbl 1178.11023, MR 2217230
Reference: [3] Barry, P.: On the central coefficients of Bell matrices.J. Integer Seq. 14 (2011), Article 11.4.3, 10 pages. Zbl 1231.11029, MR 2792159
Reference: [4] Barry, P.: On the central coefficients of Riordan matrices.J. Integer Seq. 16 (2013), Article 13.5.1, 12 pages. Zbl 1310.11032, MR 3065330
Reference: [5] Brietzke, E. H. M.: An identity of Andrews and a new method for the Riordan array proof of combinatorial identities.Discrete Math. 308 (2008), 4246-4262. Zbl 1207.05010, MR 2427755, 10.1016/j.disc.2007.08.050
Reference: [6] Cheon, G.-S., Jin, S.-T.: Structural properties of Riordan matrices and extending the matrices.Linear Algebra Appl. 435 (2011), 2019-2032. Zbl 1226.05021, MR 2810643, 10.1016/j.laa.2011.04.001
Reference: [7] Cheon, G.-S., Kim, H., Shapiro, L. W.: Combinatorics of Riordan arrays with identical $A$ and $Z$ sequences.Discrete Math. 312 (2012), 2040-2049. Zbl 1243.05007, MR 2920864, 10.1016/j.disc.2012.03.023
Reference: [8] Comtet, L.: Advanced Combinatorics. The Art of Finite and Infinite Expansions.D. Reidel Publishing, Dordrecht (1974). Zbl 0283.05001, MR 0460128, 10.1007/978-94-010-2196-8
Reference: [9] Graham, R. L., Knuth, D. E., Patashnik, O.: Concrete Mathematics. A Foundation for Computer Science.Addison-Wesley Publishing Company, Reading (1989). Zbl 0668.00003, MR 1001562
Reference: [10] He, T.-X.: Parametric Catalan numbers and Catalan triangles.Linear Algebra Appl. 438 (2013), 1467-1484. Zbl 1257.05003, MR 2997825, 10.1016/j.laa.2012.10.001
Reference: [11] He, T.-X.: Matrix characterizations of Riordan arrays.Linear Algebra Appl. 465 (2015), 15-42. Zbl 1303.05007, MR 3274660, 10.1016/j.laa.2014.09.008
Reference: [12] He, T.-X., Sprugnoli, R.: Sequence characterization of Riordan arrays.Discrete Math. 309 (2009), 3962-3974. Zbl 1228.05014, MR 2537389, 10.1016/j.disc.2008.11.021
Reference: [13] Kruchinin, D., Kruchinin, V.: A method for obtaining generating functions for central coefficients of triangles.J. Integer Seq. 15 (2012), Article 12.9.3, 10 pages. Zbl 1292.05028, MR 3005529
Reference: [14] Merlini, D., Rogers, D. G., Sprugnoli, R., Verri, M. C.: On some alternative characterizations of Riordan arrays.Can. J. Math. 49 (1997), 301-320. Zbl 0886.05013, MR 1447493, 10.4153/CJM-1997-015-x
Reference: [15] Merlini, D., Sprugnoli, R., Verri, M. C.: Lagrange inversion: when and how.Acta Appl. Math. 94 (2006), 233-249. Zbl 1108.05008, MR 2290868, 10.1007/s10440-006-9077-7
Reference: [16] Młotkowski, W.: Fuss-Catalan numbers in noncommutative probability.Doc. Math., J. DMV 15 (2010), 939-955. Zbl 1213.44004, MR 2745687
Reference: [17] Rogers, D. G.: Pascal triangles, Catalan numbers and renewal arrays.Discrete Math. 22 (1978), 301-310. Zbl 0398.05007, MR 0522725, 10.1016/0012-365X(78)90063-8
Reference: [18] Shapiro, L. W.: A Catalan triangle.Discrete Math. 14 (1976), 83-90. Zbl 0323.05004, MR 0387069, 10.1016/0012-365X(76)90009-1
Reference: [19] Shapiro, L. W., Getu, S., Woan, W.-J., Woodson, L. C.: The Riordan group.Discrete Appl. Math. 34 (1991), 229-239. Zbl 0754.05010, MR 1137996, 10.1016/0166-218X(91)90088-E
Reference: [20] Sprugnoli, R.: Riordan arrays and combinatorial sums.Discrete Math. 132 (1994), 267-290. Zbl 0814.05003, MR 1297386, 10.1016/0012-365X(92)00570-H
Reference: [21] Stanley, R. P.: Enumerative Combinatorics. Vol. 2.Cambridge Studies in Advanced Mathematics 62, Cambridge University Press, Cambridge (1999). Zbl 0928.05001, MR 1676282, 10.1017/CBO9780511609589
Reference: [22] Yang, S.-L., Zheng, S.-N., Yuan, S.-P., He, T.-X.: Schröder matrix as inverse of Delannoy matrix.Linear Algebra Appl. 439 (2013), 3605-3614. Zbl 1283.15098, MR 3119875, 10.1016/j.laa.2013.09.044
.

Files

Files Size Format View
CzechMathJ_67-2017-4_3.pdf 290.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo