Previous |  Up |  Next

Article

Title: Modular classes of Q-manifolds: a review and some applications (English)
Author: Bruce, Andrew James
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 4
Year: 2017
Pages: 203-219
Summary lang: English
.
Category: math
.
Summary: A Q-manifold is a supermanifold equipped with an odd vector field that squares to zero. The notion of the modular class of a Q-manifold – which is viewed as the obstruction to the existence of a Q-invariant Berezin volume – is not well know. We review the basic ideas and then apply this technology to various examples, including $L_{\infty}$-algebroids and higher Poisson manifolds. (English)
Keyword: Q-manifolds
Keyword: modular classes
Keyword: characteristic classes
Keyword: higher Poisson manifolds
Keyword: $L_{\infty }$-algebroids
MSC: 17B66
MSC: 53D17
MSC: 57R20
MSC: 58A50
idZBL: Zbl 06819526
idMR: MR3733067
DOI: 10.5817/AM2017-4-203
.
Date available: 2017-11-22T09:42:06Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146983
.
Reference: [1] Batalin, I.A., Vilkovisky, G.A.: Gauge algebra and quantization.Phys. Lett. B 102 (1) (1981), 27–31. MR 0616572, 10.1016/0370-2693(81)90205-7
Reference: [2] Batalin, I.A., Vilkovisky, G.A.: Quantization of gauge theories with linearly dependent generators.Phys. Rev. D (3) 28 (10) (1983), 2567–2582. MR 0726170, 10.1103/PhysRevD.28.2567
Reference: [3] Batalin, I.A., Vilkovisky, G.A.: Closure of the gauge algebra, generalized Lie equations and Feynman rules.Nuclear Phys. B 234 (1) (1984), 106–124. MR 0736479
Reference: [4] Bonavolontà, G., Poncin, N.: On the category of Lie n-algebroids.J. Geom. Phys. 73 (2013), 70–90, arXiv:1207.3590. Zbl 1332.58005, MR 3090103, 10.1016/j.geomphys.2013.05.004
Reference: [5] Braun, C., Lazarev, A.: Unimodular homotopy algebras and Chern-Simons theory.J. Pure Appl. Algebra 219 (11 (2015), 5158–5194, arXiv:1309.3219. MR 3351579, 10.1016/j.jpaa.2015.05.017
Reference: [6] Bruce, A.J.: From $L_{\infty }$-algebroids to higher Schouten/Poisson structures.Rep. Math. Phys. 67 (2) (2011), 157–177, arXiv:1007.1389. Zbl 1237.53077, MR 2840338, 10.1016/S0034-4877(11)00010-3
Reference: [7] Bruce, A.J., Grabowska, K., Grabowski, J.: Linear duals of graded bundles and higher analogues of (Lie) algebroids.J. Geom. Phys. 101 (2016), 71–99, arXiv:1409.0439. Zbl 1334.58002, MR 3453885, 10.1016/j.geomphys.2015.12.004
Reference: [8] Carmeli, C., Caston, L., Fioresi, R.: Mathematical foundations of supersymmetry.EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2011, xiv+287pp., ISBN: 978-3-03719-097-5. Zbl 1226.58003, MR 2840967
Reference: [9] Damianou, P.A., Fernandes, R.L.: Integrable hierarchies and the modular class.Ann. Inst. Fourier (Grenoble) 58 (1) (2008), 107–137, arXiv:math/0607784. Zbl 1147.53065, MR 2401218, 10.5802/aif.2346
Reference: [10] Evens, S., Lu, J.H., Weinstein, A.: Transverse measures, the modular class and a cohomology pairing for Lie algebroids.Quart. J. Math. Oxford Ser. (2) 50 (1999), 417–436, arXiv:dg-ga/9610008. Zbl 0968.58014, MR 1726784, 10.1093/qjmath/50.200.417
Reference: [11] Fernandes, R.L.: Lie algebroids, holonomy and characteristic classes.Adv. Math. 170 (1) (2002), 119–179, arXiv:math/0007132. Zbl 1007.22007, MR 1929305, 10.1006/aima.2001.2070
Reference: [12] Grabowski, J.: Modular classes of skew algebroid relations.Transform. Groups 17 (4) (2011), 989–1010, arXiv:1108.2366. MR 3000478, 10.1007/s00031-012-9197-2
Reference: [13] Grabowski, J.: Modular classes revisited.J. Geom. Methods Mod. Phys 11 (9) (2014), 11pp., arXiv:1311.3962. Zbl 1343.53082, MR 3270305
Reference: [14] Grabowski, J., Marmo, G., Michor, P.W.: Homology and modular classes of Lie algebroids.Ann. Inst. Fourier (Grenoble) 56 (1) (2006), 69–83, arXiv:math/0310072. Zbl 1141.17018, MR 2228680, 10.5802/aif.2172
Reference: [15] Granåker, J.: Unimodular L-infinity algebras.preprint (2008), arXiv:0803.1763.
Reference: [16] Khudaverdian, H.M.: Laplacians in odd symplectic geometry.Quantization, Poisson brackets and beyond, Contemp. Math., vol. 315, Amer. Math. Soc., Providence, RI, 2002. Zbl 1047.53049, MR 1958837, 10.1090/conm/315/05481
Reference: [17] Khudaverdian, H.M., Voronov, Th.Th.: On odd Laplace operators.Lett. Math. Phys. 62 (2) (2002), 127–142, arXiv:math/0205202. Zbl 1044.58042, MR 1952122, 10.1023/A:1021671812079
Reference: [18] Khudaverdian, H.M., Voronov, Th.Th.: Higher Poisson brackets and differential forms.Geometric methods in physics, AIP Conf. Proc., 1079, Amer. Inst. Phys., Melville, NY, 2008, arXiv:0808.3406, pp. 203–215. Zbl 1166.70011, MR 2757715
Reference: [19] Kosmann-Schwarzbach, Y.: Poisson manifolds, Lie algebroids, modular classes: a survey.SIGMA (2008), paper 005, 30pp., arXiv:0710.3098. Zbl 1147.53067, MR 2369386
Reference: [20] Koszul, J.: Crochet de Schouten-Nijenhuis et cohomologie,The mathematical heritage of Élie Cartan (Lyon, 1984).Astérisque, Numéro Hors Série (1985), 257–271. MR 0837203
Reference: [21] Kotov, A., Strobl, T.: Characteristic classes associated to Q-bundles.Int. J. Geom. Methods Mod. Phys. 12 (1) (2015), 26 pp., 1550006 arXiv:0711.4106. Zbl 1311.58002, MR 3293862, 10.1142/S0219887815500061
Reference: [22] Lyakhovich, S.L., Mosman, E.A., Sharapov, A.A.: Characteristic classes of Q-manifolds: classification and applications.J. Geom. Phys. 60 (5) (2010), 729–759, arXiv:0906.0466. Zbl 1188.58003, MR 2608525, 10.1016/j.geomphys.2010.01.008
Reference: [23] Lyakhovich, S.L., Sharapov, A.A.: Characteristic classes of gauge systems.Nuclear Phys. B 703 (3) (2004), 419–453, arXiv:0906.0466. Zbl 1198.81179, MR 2105279, 10.1016/j.nuclphysb.2004.10.001
Reference: [24] Mackenzie, K.C.H.: Double Lie algebroids and second-order geometry, I..Adv. Math. 94 (2) (1992), 180–239. Zbl 0765.57025, MR 1174393, 10.1016/0001-8708(92)90036-K
Reference: [25] Mackenzie, K.C.H.: Double Lie algebroids and second-order geometry, II..Adv. Math. 154 (1) (2000), 46–75. Zbl 0971.58015, MR 1780095, 10.1006/aima.1999.1892
Reference: [26] Manin, Y.I.: Gauge field theory and complex geometry.Fundamental Principles of Mathematical Sciences, vol. 289, Springer-Verlag, Berlin, 2nd ed., 1997, xii+346 pp. ISBN: 3-540-61378-1. Zbl 0884.53002, MR 1632008
Reference: [27] Mehta, R.A.: Q-algebroids and their cohomology.J. Symplectic Geom. 7 (3) (2009), 263–293, arXiv:math/0703234. Zbl 1215.22002, MR 2534186, 10.4310/JSG.2009.v7.n3.a1
Reference: [28] Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids.Quantization, Poisson brackets and beyond, Contemp. Math., vol. 315, Amer. Math. Soc., Providence, RI, 2002, arXiv:math/0203110, pp. 169–185. Zbl 1036.53057, MR 1958835
Reference: [29] Roytenberg, D.: The modular class of a differential graded manifold, talk presented at the International Workshop on Gauge Theories, Supersymmetry and Mathematical Physics.Lyon, France, 2010, 6-10 April 2010.
Reference: [30] Shander, V.N.: Orientations of supermanifolds.Funct. Anal. Appl. 22 (1) (1988), 80–82. Zbl 0668.58003, MR 0936715, 10.1007/BF01077738
Reference: [31] Sheng, Y., Zhu, C.: Higher extensions of Lie algebroids.Commun. Contemp. Math. 0 (2013), 1650034, arXiv:1103.5920. MR 3631929
Reference: [32] Vaĭntrob, A.Yu.: Lie algebroids and homological vector fields.Russ. Math. Surv. 52 (1997), 428–429. Zbl 0955.58017, MR 1480150, 10.1070/RM1997v052n02ABEH001802
Reference: [33] Varadarajan, V.S.: Supersymmetry for mathematicians: an introduction.Courant Lecture Notes in Mathematics, 11. New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2004, viii+300 pp. ISBN: 0-8218-3574-2. Zbl 1142.58009, MR 2069561
Reference: [34] Voronov, Th.: Q-manifolds and Mackenzie theory: an overview.preprint (2007), arXiv:0709.4232. MR 2971727
Reference: [35] Voronov, Th.: Higher derived brackets and homotopy algebras.J. Pure Appl. Algebra 202 (1–3) (2005), 133–153, arXiv:math/0304038. Zbl 1086.17012, MR 2163405, 10.1016/j.jpaa.2005.01.010
Reference: [36] Voronov, Th.: Q-manifolds and Mackenzie theory.Comm. Math. Phys. 315 (2012), 279–310. Zbl 1261.53080, MR 2971727, 10.1007/s00220-012-1568-y
Reference: [37] Weinstein, A.: The modular automorphism group of a Poisson manifold.J. Geom. Phys. 23 (1997), 379–394. Zbl 0902.58013, MR 1484598, 10.1016/S0393-0440(97)80011-3
.

Files

Files Size Format View
ArchMathRetro_053-2017-4_2.pdf 579.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo