[2] Alziary, B., Décamps, J.-P., Koehl, P.-F.: 
A P.D.E. approach to Asian options: analytical and numerical evidence. J. Bank. Financ. 21 (1997), 613-640. 
DOI 10.1016/S0378-4266(96)00057-X 
[5] Ciarlet, P. G.: 
The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications 4, North-Holland Publishing Company, Amsterdam (1978). 
MR 0520174 | 
Zbl 0383.65058 
[9] Dubois, F., Lelièvre, T.: 
Efficient pricing of Asian options by the PDE approach. J. Comput. Finance 8 (2005), 55-63. 
DOI 10.21314/jcf.2005.138 
[11] Hale, J. K.: 
Ordinary Differential Equations. Pure and Applied Mathematics 21, Wiley-Interscience a division of John Wiley & Sons, New York (1969). 
MR 0419901 | 
Zbl 0186.40901 
[13] Haug, E. G.: The Complete Guide to Option Pricing Formulas. McGraw-Hill, New York (2006).
[16] Hozman, J.: 
Analysis of the discontinuous Galerkin method applied to the European option pricing problem. AIP Conference Proceedings 1570 (2013), 227-234. 
DOI 10.1063/1.4854760 
[17] Hozman, J., Tichý, T.: 
Black-Scholes option pricing model: Comparison of $h$-convergence of the DG method with respect to boundary condition treatment. ECON - Journal of Economics, Management and Business 24 (2014), 141-152. 
DOI 10.7327/econ.2014.03.03 
[20] Hozman, J., Tichý, T., Cvejnová, D.: 
A discontinuous Galerkin method for two-dimensional PDE models of Asian options. AIP Conference Proceedings 1738 (2016), Article no. 080011. 
DOI 10.1063/1.4951846 
[21] J. E. Ingersoll, Jr.: Theory of Financial Decision Making. Rowman & Littlefield Publishers, New Jersey (1987).
[24] Reed, W. H., Hill, T. R.: Triangular mesh methods for the neutron transport equation. Conf. Report, National Topical Meeting on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems, Ann Arbor 1973 Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, New Mexico (1973).
[25] Rektorys, K.: 
Variational Methods in Engineering Problems and in Problems of Mathematical Physics. Nakladatelsví Technické Literatury, Praha Czech (1974). 
MR 0487652 | 
Zbl 0371.35001 
[26] Rivière, B.: 
Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Theory and Implementation. Frontiers in Applied Mathematics 35, Society for Industrial and Applied Mathematics, Philadelphia (2008). 
DOI 10.1137/1.9780898717440 | 
MR 2431403 | 
Zbl 1153.65112 
[28] Večeř, J.: 
A new PDE approach for pricing arithmetic average Asian options. J. Comput. Finance 4 (2001), 105-113. 
DOI 10.21314/jcf.2001.064 
[29] Večeř, J.: Unified pricing of Asian options. Risk 15 (2002), 113-116.
[30] Wilmott, P., Dewynne, J., Howison, J.: 
Option Pricing: Mathematical Models and Computation. Financial Press, Oxford (1993). 
Zbl 0844.90011 
[32] Zvan, R., Forsyth, P. A., Vetzal, K.: 
Robust numerical methods for PDE models of Asian options. J. Comput. Finance 1 (1998), 39-78. 
DOI 10.21314/jcf.1997.006