# Article

Keywords:
$(\mathcal {T},n)$-presented module; $(\mathcal {T},n)$-injective module; $(\mathcal {T},n)$-flat module; $(\mathcal {T},n)$-coherent ring
Summary:
Let $R$ be a ring. A subclass $\mathcal {T}$ of left $R$-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let $\mathcal {T}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. Then a left $R$-module $M$ is called $\mathcal {T}$-finitely generated if there exists a finitely generated submodule $N$ such that $M/N\in \mathcal {T}$; a left $R$-module $A$ is called $(\mathcal {T},n)$-presented if there exists an exact sequence of left $R$-modules $$0\longrightarrow K_{n-1}\longrightarrow F_{n-1}\longrightarrow \cdots \longrightarrow F_1\longrightarrow F_0\longrightarrow M\longrightarrow 0$$ such that $F_0,\cdots ,F_{n-1}$ are finitely generated free and $K_{n-1}$ is $\mathcal {T}$-finitely generated; a left $R$-module $M$ is called $(\mathcal {T},n)$-injective, if ${\rm Ext}^n_R(A, M)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$; a right $R$-module $M$ is called $(\mathcal {T},n)$-flat, if ${\rm Tor}^R_n(M, A)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$. A ring $R$ is called $(\mathcal {T},n)$-coherent, if every $(\mathcal {T},n+1)$-presented module is $(n+1)$-presented. Some characterizations and properties of these modules and rings are given.
References:
 Chase, S. U.: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457-473. DOI 10.1090/S0002-9947-1960-0120260-3 | MR 0120260 | Zbl 0100.26602
 Cheatham, T. J., Stone, D. R.: Flat and projective character modules. Proc. Am. Math. Soc. 81 (1981), 175-177. DOI 10.1090/S0002-9939-1981-0593450-2 | MR 0593450 | Zbl 0458.16014
 Chen, J., Ding, N.: On $n$-coherent rings. Commun. Algebra 24 (1996), 3211-3216. DOI 10.1080/00927879608825742 | MR 1402554 | Zbl 0877.16010
 Costa, D. L.: Parameterizing families of non-Noetherian rings. Commun. Algebra 22 (1994), 3997-4011. DOI 10.1080/00927879408825061 | MR 1280104 | Zbl 0814.13010
 Enochs, E.: A note on absolutely pure modules. Canad. Math. Bull. 19 (1976), 361-362. DOI 10.4153/CMB-1976-054-5 | MR 0429988 | Zbl 0346.16020
 Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). DOI 10.1515/9783110803662 | MR 1753146 | Zbl 0952.13001
 Enochs, E. E., Jenda, O. M. G., Lopez-Ramos, J. A.: The existence of Gorenstein flat covers. Math. Scand. 94 (2004), 46-62. DOI 10.7146/math.scand.a-14429 | MR 2032335 | Zbl 1061.16003
 Jones, M. Finkel: Coherence relative to an hereditary torsion theory. Commun. Algebra 10 (1982), 719-739. DOI 10.1080/00927878208822745 | MR 0650869 | Zbl 0483.16027
 Holm, H., Jørgensen, P.: Covers, precovers, and purity. Illinois J. Math. 52 (2008), 691-703. MR 2524661 | Zbl 1189.16007
 Mao, L., Ding, N.: Relative coherence of rings. J. Algebra Appl. 11 (2012), 1250047, 16 pages. DOI 10.1142/S0219498811005749 | MR 2928115 | Zbl 1252.16018
 Megibben, C.: Absolutely pure modules. Proc. Am. Math. Soc. 26 (1970), 561-566. DOI 10.1090/S0002-9939-1970-0294409-8 | MR 0294409 | Zbl 0216.33803
 Rotman, J. J.: An Introduction to Homological Algebra. Pure and Applied Mathematics 85, Academic Press, Harcourt Brace Jovanovich Publishers, New York-London (1979). MR 0538169 | Zbl 0441.18018
 Stenström, B.: Coherent rings and FP-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. DOI 10.1112/jlms/s2-2.2.323 | MR 0271145 | Zbl 0194.06602
 Stenström, B.: Rings of Quotients. An Introduction to Methods of Ring Theory. Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer, New York (1975). DOI 10.1007/978-3-642-66066-5 | MR 0389953 | Zbl 0296.16001
 Trlifaj, J.: Cover, Envelopes, and Cotorsion Theories. Lecture notes for the workshop. Homological Methods in Module Theory, Cortona (2000).
 Wisbauer, R.: Foundations of Module and Ring Theory. A Handbook for Study and Research. Algebra, Logic and Applications 3, Gordon and Breach Science Publishers, Philadelphia (1991). MR 1144522 | Zbl 0746.16001
 Yang, X., Liu, Z.: $n$-flat and $n$-FP-injective modules. Czech. Math. J. 61 (2011), 359-369. DOI 10.1007/s10587-011-0080-4 | MR 2905409 | Zbl 1249.13011
 Zhou, D.: On $n$-coherent rings and $(n,d)$-rings. Commun. Algebra 32 (2004), 2425-2441. DOI 10.1081/AGB-120037230 | MR 2100480 | Zbl 1089.16001