Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
g-row stochastic matrix; gut-majorization; linear preserver; strong linear preserver; two-sided gut-majorization
Summary:
For $X,Y \in {\bf M}_{n,m}$ it is said that $X$ is gut-majorized by $Y$, and we write $ X\prec _{\rm gut} Y$, if there exists an $n$-by-$n$ upper triangular g-row stochastic matrix $R$ such that $X=RY$. Define the relation $\sim _{\rm gut}$ as follows. $X\sim _{\rm gut}Y$ if $X$ is gut-majorized by $Y$ and $Y$ is gut-majorized by $X$. The (strong) linear preservers of $\prec _{\rm gut}$ on $\mathbb {R}^{n}$ and strong linear preservers of this relation on ${\bf M}_{n,m}$ have been characterized before. This paper characterizes all (strong) linear preservers and strong linear preservers of $\sim _{\rm gut}$ on $\mathbb {R}^{n}$ and ${\bf M}_{n,m}$.
References:
[1] Armandnejad, A., Manesh, A. Ilkhanizadeh: GUT-majorization and its linear preservers. Electron. J. Linear Algebra 23 (2012), 646-654. DOI 10.13001/1081-3810.1547 | MR 2966796 | Zbl 1253.15040
[2] Brualdi, R. A., Dahl, G.: An extension of the polytope of doubly stochastic matrices. Linear Multilinear Algebra 61 (2013), 393-408. DOI 10.1080/03081087.2012.689980 | MR 3003432 | Zbl 1269.15034
[3] Hasani, A. M., Radjabalipour, M.: The structure of linear operators strongly preserving majorizations of matrices. Electron. J. Linear Algebra 15 (2006), 260-268. DOI 10.13001/1081-3810.1236 | MR 2255479 | Zbl 1145.15003
[4] Hasani, A. M., Radjabalipour, M.: On linear preservers of (right) matrix majorization. Linear Algebra Appl. 423 (2007), 255-261. DOI 10.1016/j.laa.2006.12.016 | MR 2312405 | Zbl 1120.15004
[5] Manesh, A. Ilkhanizadeh: On linear preservers of sgut-majorization on $M_{n,m}$. Bull. Iran. Math. Soc. 42 (2016), 471-481. MR 3498168 | Zbl 1373.15043
[6] Manesh, A. Ilkhanizadeh: Right gut-majorization on $M_{n,m}$. Electron. J. Linear Algebra 31 (2016), 13-26. DOI 10.13001/1081-3810.3235 | MR 3484660 | Zbl 1332.15011
[7] Manesh, A. Ilkhanizadeh, Armandnejad, A.: Ut-majorization on ${\Bbb R}^n$ and its linear preservers. Operator Theory, Operator Algebras and Applications M. Bastos Operator Theory: Advances and Applications 242, Birkhäuser, Basel (2014), 253-259. DOI 10.1007/978-3-0348-0816-3_15 | MR 3243295 | Zbl 1318.15016
[8] Li, C. K., Poon, E.: Linear operators preserving directional majorization. Linear Algebra Appl. 235 (2001), 141-149. DOI 10.1016/S0024-3795(00)00328-1 | MR 1810100 | Zbl 0999.15030
[9] Motlaghian, S. M., Armandnejad, A., Hall, F. J.: Linear preservers of row-dense matrices. Czech. Math. J. 66 (2016), 847-858. DOI 10.1007/s10587-016-0296-4 | MR 3556871 | Zbl 06644037
[10] Niezgoda, M.: Cone orderings, group majorizations and similarly separable vectors. Linear Algebra Appl. 436 (2012), 579-594. DOI 10.1016/j.laa.2011.07.013 | MR 2854893 | Zbl 1244.26047
Partner of
EuDML logo