Previous |  Up |  Next

Article

Keywords:
countably compact space; Lindelöf space; Lindelöf $P$-space; functionally countable space; exponentially separable space; retraction; scattered space; extent; Sokolov space; weakly Sokolov space; function space
Summary:
A space $X$ is {functionally countable} if $f(X)$ is countable for any continuous function $f\colon X \to {\mathbb{R}}$. We will call a space $X$ {exponentially separable} if for any countable family ${\mathcal{F}}$ of closed subsets of $X$, there exists a countable set $A\subset X$ such that $A\cap \bigcap {\mathcal{G}}\neq\emptyset$ whenever ${\mathcal{G}}\subset {\mathcal{F}}$ and $\bigcap {\mathcal{G}}\neq\emptyset$. Every exponentially separable space is functionally countable; we will show that for some nice classes of spaces exponential separability coincides with functional countability. We will also establish that the class of exponentially separable spaces has nice categorical properties: it is preserved by closed subspaces, countable unions and continuous images. Besides, it contains all Lindelöf $P$-spaces as well as some wide classes of scattered spaces. In particular, if a scattered space is either Lindelöf or ${\omega}$-bounded, then it is exponentially separable.
References:
[1] Engelking R.: General Topology. Mathematical Monographs, 60, Polish Scientific Publishers, Warsaw, 1977. MR 0500780 | Zbl 0684.54001
[2] Kannan V., Rajagopalan M.: Scattered spaces II. Illinois J. Math. 21 (1977), no. 4, 735–751. MR 0474180
[3] Moore J. T.: A solution to the $L$ space problem. J. Amer. Math. Soc. 19 (2006), no. 3, 717–736. DOI 10.1090/S0894-0347-05-00517-5 | MR 2220104 | Zbl 1107.03056
[4] Mrówka S.: Some set-theoretic constructions in topology. Fund. Math. 94 (1977), no. 2, 83–92. DOI 10.4064/fm-94-2-83-92 | MR 0433388
[5] Rojas-Hernández R., Tkachuk V. V.: A monotone version of the Sokolov property and monotone retractability in function spaces. J. Math. Anal. Appl. 412 (2014), no. 1, 125–137. DOI 10.1016/j.jmaa.2013.10.043 | MR 3145787
[6] Sokolov G. A.: Lindelöf spaces of continuous functions. Matem. Zametki 39 (1986), no. 6, 887–894, 943 (Russian). MR 0855936
[7] Telgársky R.: Spaces defined by topological games. Fund. Math. 88 (1975), no. 3, 193–223. DOI 10.4064/fm-88-3-193-223 | MR 0380708
[8] Tkachuk V. V.: A nice class extracted from $C_p$-theory. Comment. Math. Univ. Carolin. 46 (2005), no. 3, 503–513. MR 2174528
[9] Tkachuk V. V.: A $C_p$-theory Problem Book. Topological and Function Spaces. Problem Books in Mathematics, Springer, New York, 2011. MR 3024898 | Zbl 1222.54002
[10] Tkachuk V. V.: A $C_p$-theory Problem Book. Special Features of Function Spaces. Problem Books in Mathematics, Springer, Cham, 2014. MR 3243753
[11] Tkachuk V. V.: A $C_p$-theory Problem Book. Compactness in Function Spaces. Problem Books in Mathematics, Springer, Cham, 2015. MR 3364185
[12] Tkachuk V. V.: Lindelöf $P$-spaces need not be Sokolov. Math. Slovaca 67 (2017), no. 1, 227–234. DOI 10.1515/ms-2016-0262 | MR 3630168
[13] Uspenskij V. V.: On the spectrum of frequencies of function spaces. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 37 (1982), no. 1, 31–35 (Russian. English summary). MR 0650600
Partner of
EuDML logo