[2] Bryant, R.L., Eastwood, M.G., Gover, A.R., Neusser, K.: Some differential complexes within and beyond parabolic geometry. arXiv:1112.2142.
[4] Čap, A., Salač, T.: 
Parabolic conformally symplectic structures I; definition and distinguished connections. Forum Math., to appear,  arXiv:1605.01161. 
MR 3794908[5] Čap, A., Salač, T.: 
Parabolic conformally symplectic structures II; parabolic contactization. Ann. Mat. Pura Appl., to appear, arXiv:1605.01897. 
MR 3829565[6] Čap, A., Salač, T.: 
Parabolic conformally symplectic structures III; invariant differential operators and complexes. arXiv:1701.01306. 
MR 3829565[8] Čap, A., Slovák, J.: 
Parabolic Geometries I: Background and General Theory. Math. Surveys Monogr. 154 (209). 
MR 2532439[11] Eastwood, M.G., Slovák, J.: Conformally Fedosov manifolds. arXiv:1210. 5597.
[13] Knapp, A.W.: 
Lie Groups, Lie Algebras, and Cohomology. Princeton University Press, 1988. 
MR 0938524[15] Penrose, R., Rindler, W.: 
Spinors and Space-time. vol. 1, Cambridge University Press, 1984. 
MR 0776784[16] Seshadri, N.:  
[18] Tseng, L.-S., Yau, S.-T.: 
Cohomology and Hodge theory on symplectic manifolds: I and II. J. Differential Geom. 91 (2012), 383–416, 417–443. 
DOI 10.4310/jdg/1349292670 | 
MR 2981843