[1] Afonso, S. M., Bonotto, E. M., Federson, M., Schwabik, Š.: 
Discontinuous local semiflows for Kurzweil equations leading to LaSalle's invariance principle for differential systems with impulses at variable times. J. Differ. Equations 250 (2011), 2969-3001. 
DOI 10.1016/j.jde.2011.01.019 | 
MR 2771252 | 
Zbl 1213.34019[3] Das, P. C., Sharma, R. R.: 
Existence and stability of measure differential equations. Czech. Math. J. 22 (1972), 145-158. 
MR 0304815 | 
Zbl 0241.34070[4] Federson, M., Schwabik, Š.: 
Generalized ODE approach to impulsive retarded functional differential equations. Differ. Integral Equ. 19 (2006), 1201-1234. 
MR 2278005 | 
Zbl 1212.34251[6] Federson, M., Schwabik, Š.: 
A new approach to impulsive retarded differential equations: stability results. Funct. Differ. Equ. 16 (2009), 583-607. 
MR 2597466 | 
Zbl 1200.34097[9] Henstock, R.: 
Lectures on the Theory of Integration. Series in Real Analysis 1. World Scientific Publishing, Singapore (1988). 
MR 0963249 | 
Zbl 0668.28001[10] Hönig, C. S.: 
Volterra Stieltjes-Integral Equations. Functional Analytic Methods; Linear Constraints. Mathematics Studies 16. North-Holland Publishing, Amsterdam (1975). 
MR 0499969 | 
Zbl 0307.45002[11] Imaz, C., Vorel, Z.: 
Generalized ordinary differential equations in Banach space and applications to functional equations. Bol. Soc. Mat. Mex., II. Ser 11 (1966), 47-59. 
MR 0232060 | 
Zbl 0178.44203[12] Kurzweil, J.: 
Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-448. 
MR 0111875 | 
Zbl 0090.30002[13] Kurzweil, J.: 
Generalized ordinary differential equations. Czech. Math. J. 8 (1958), 360-388. 
MR 0111878 | 
Zbl 0094.05804[14] Kurzweil, J.: 
Unicity of solutions of generalized differential equations. Czech. Math. J. 8 (1958), 502-509. 
MR 0111880 | 
Zbl 0094.05901[15] Kurzweil, J.: 
Addition to my paper ``Generalized ordinary differential equations and continuous dependence on a parameter''. Czech. Math. J. 9 (1959), 564-573. 
MR 0111882 | 
Zbl 0094.05902[16] Kurzweil, J.: 
Problems which lead to a generalization of the concept of an ordinary nonlinear differential equation. Differ. Equ. Appl Publ. House Czechoslovak Acad. Sci., Prague; Academic Press, New York (1963), 65-76. 
MR 0177173 | 
Zbl 0151.12501[20] Oliva, F., Vorel, Z.: 
Functional equations and generalized ordinary differential equations. Bol. Soc. Mat. Mex., II. Ser. 11 (1966), 40-46. 
MR 0239227 | 
Zbl 0178.44204[21] Schwabik, Š.: 
Generalized Ordinary Differential Equations. Series in Real Analysis 5. World Scientific Publishing, River Edge (1992). 
MR 1200241 | 
Zbl 0781.34003[23] Schwabik, Š.: 
Linear Stieltjes integral equations in Banach spaces. Math. Bohem. 124 (1999), 433-457. 
MR 1722877 | 
Zbl 0937.34047[24] Schwabik, Š.: 
Linear Stieltjes integral equations in Banach spaces II; Operator valued solutions. Math. Bohem. 125 (2000), 431-454. 
MR 1802292 | 
Zbl 0974.34057[27] Tvrdý, M.: 
Linear integral equations in the space of regulated functions. Math. Bohem. 123 (1998), 177-212. 
MR 1673977 | 
Zbl 0941.45001