Previous |  Up |  Next


stochastic differential equations; continuous coefficients; weak solutions
We revisit the proof of existence of weak solutions of stochastic differential equations with continuous coeficients. In standard proofs, the coefficients are approximated by more regular ones and it is necessary to prove that: i) the laws of solutions of approximating equations form a tight set of measures on the paths space, ii) its cluster points are laws of solutions of the limit equation. We aim at showing that both steps may be done in a particularly simple and elementary manner.
[1] Bensoussan, A.: Stochastic Navier-Stokes equations. Acta Appl. Math. 38 (1995), 267-304. DOI 10.1007/bf00996149 | MR 1326637
[2] Billingsley, P.: Convergence of Probability Measures. Second edition. Wiley, New York 1999. DOI 10.1002/9780470316962 | MR 1700749
[3] Bogachev, V. I.: Measure Theory, Vol. II. Springer, Berlin 2007. DOI 10.1007/978-3-540-34514-5 | MR 2267655
[4] Brzeźniak, Z., Ondreját, M., Seidler, J.: Invariant measures for stochastic nonlinear beam and wave equations. J. Differential Equations 260 (2016), 4157-4179. DOI 10.1016/j.jde.2015.11.007 | MR 3437583
[5] Cherny, A.: Some particular problems of martingale theory. In: From Stochastic Calculus to Mathematical Finance, Springer, Berlin 2006, pp. 109-124. DOI 10.1007/978-3-540-30788-4\_6 | MR 2233537
[6] Debussche, A., Glatt-Holtz, N., Temam, R.: Local martingale and pathwise solutions for an abstract fluids model. Phys. D 240 (2011), 1123-1144. DOI 10.1016/j.physd.2011.03.009 | MR 2812364
[7] Dudley, R. M.: Real Analysis and Probability. Cambridge University Press, Cambridge 2002. DOI 10.1017/cbo9780511755347 | MR 1932358 | Zbl 1023.60001
[8] Hofmanová, M., Seidler, J.: On weak solutions of stochastic differential equations. Stoch. Anal. Appl. 30 (2012), 100-121. DOI 10.1080/07362994.2012.628916 | MR 2870529
[9] Hofmanová, M., Seidler, J.: On weak solutions of stochastic differential equations II. Stoch. Anal. Appl. 31 (2013), 663-670. DOI 10.1080/07362994.2013.799025 | MR 3175790
[10] Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô's stochastic equations via approximations. Probab. Theory Related Fields 105 (1996), 143-158. DOI 10.1007/bf01203833 | MR 1392450
[11] Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam 1981. DOI 10.1016/s0924-6509(08)70226-5 | MR 0637061
[12] Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus. Springer, New York 1988. DOI 10.1007/978-1-4684-0302-2 | MR 0917065
[13] Kurtz, T. G., Protter, P. E.: Weak convergence of stochastic integrals and differential equations. In: Probabilistic Models for Nonlinear Partial Differential Equations, Lecture Notes in Math. 1627, Springer, Berlin 1996, pp. 1-41. DOI 10.1007/bfb0093176 | MR 1431298
[14] Skorokhod, A. V.: On existence and uniqueness of solutions to stochastic differential equations (in Russian). Sibirsk. Mat. Ž. 2 (1961), 129-137. MR 0132595
[15] Strock, D. W., Varadhan, S. R. S.: Multidimensional Diffusion Processes. Springer, Berlin 1979. MR 0532498
[16] Taheri, A.: Function Spaces and Partial Differential Equations, Vol. 1: Classical Analysis. Oxford University Press, Oxford 2015. DOI 10.1093/acprof:oso/9780198733133.001.0001 | MR 3410096
[17] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam 1978. DOI 10.1016/s0924-6509(09)x7004-2 | MR 0503903
Partner of
EuDML logo