Previous |  Up |  Next


Title: Fraïssé structures and a conjecture of Furstenberg (English)
Author: Bartošová, Dana
Author: Zucker, Andy
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 1
Year: 2019
Pages: 1-24
Summary lang: English
Category: math
Summary: We study problems concerning the Samuel compactification of the automorphism group of a countable first-order structure. A key motivating question is a problem of Furstenberg and a counter-conjecture by Pestov regarding the difference between $S(G)$, the Samuel compactification, and $E(M(G))$, the enveloping semigroup of the universal minimal flow. We resolve Furstenberg's problem for several automorphism groups and give a detailed study in the case of $G= S_\infty$, leading us to define and investigate several new types of ultrafilters on a countable set. (English)
Keyword: Fraïssé structures
Keyword: enveloping semigroups
Keyword: universal minimal flow
MSC: 03E05
MSC: 05C63
MSC: 22F50
MSC: 37B05
idZBL: Zbl 07088822
idMR: MR3946661
DOI: 10.14712/1213-7243.2015.276
Date available: 2019-05-13T07:43:12Z
Last updated: 2021-04-05
Stable URL:
Reference: [1] Ajtai M., Komlós J., Szemerédi E.: A note on Ramsey numbers.J. Combin. Theory Ser. A 29 (1980), no. 3, 354–360. MR 0600598, 10.1016/0097-3165(80)90030-8
Reference: [2] Auslander J.: Minimal Flows and Their Extensions.North-Holland Mathematics Studies, 153, Mathematical Notes, 122, North-Holland Publishing, Amsterdam, 1988. MR 0956049
Reference: [3] Baranyai Z.: On the factorization of the complete uniform hypergraph.Infinite and Finite Sets, Colloq. dedicated to P. Erdős on his 60th birthday, Keszthely, 1973; Colloq. Math. Soc. János Bōlyai 10 (1975), 91–108. MR 0416986
Reference: [4] Bartošová D.: Topological Dynamics of Automorphism Groups of $\omega$-homogeneous Structures via Near Ultrafilters.Ph.D. Thesis, University of Toronto, Toronto, 2013. MR 3312905
Reference: [5] Ben Yaacov I., Melleray J., Tsankov T.: Metrizable universal minimal flows of Polish groups have a comeagre orbit.Geom. Funct. Anal. 27 (2017), no. 1, 67–77. MR 3613453, 10.1007/s00039-017-0398-7
Reference: [6] Booth D.: Ultrafilters on a countable set.Ann. Math. Logic 2 (1970), no. 1, 1–24. MR 0277371, 10.1016/0003-4843(70)90005-7
Reference: [7] Ellis R.: Lectures on Topological Dynamics.W. A. Benjamin, New York, 1969. Zbl 0193.51502, MR 0267561
Reference: [8] Furstenberg H.: Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation.Math. Systems Theory 1 (1967), 1–49. MR 0213508, 10.1007/BF01692494
Reference: [9] Glasner E., Tsankov T., Weiss B., Zucker A.: Bernoulli disjointness.available at arXiv:1901.03406v1 [math.DS] (2019), 26 pages.
Reference: [10] Glasner E., Weiss B.: Interpolation sets for subalgebras of $ l^\infty(\mathbb{Z})$.Israel J. Math. 44 (1983), no. 4, 345–360. MR 0710239, 10.1007/BF02761993
Reference: [11] Glasner E., Weiss B.: Minimal actions of the group $S(\mathbb{Z})$ of permutations of the integers.Geom. Funct. Anal. 12 (2002), no. 5, 964–988. MR 1937832, 10.1007/PL00012651
Reference: [12] Hindman N., Strauss D.: Algebra in the Stone–Čech Compactification.Theory and Applications, De Gruyter Textbook, Walter de Gruyter, Berlin, 2012. MR 2893605
Reference: [13] Kechris A. S., Pestov V. G., Todorcevic S.: Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups.Geom. Funct. Anal. 15 (2005), no. 1, 106–189. MR 2140630, 10.1007/s00039-005-0503-1
Reference: [14] Laflamme C.: Forcing with filters and complete combinatorics.Ann. Pure Appl. Logic 42 (1989), no. 2, 125–163. MR 0996504, 10.1016/0168-0072(89)90052-3
Reference: [15] Melleray J., Nguyen Van Thé L., Tsankov T.: Polish groups with metrizable universal minimal flows.Int. Math. Res. Not. IMR 2016 (2016), no. 5, 1285–1307. MR 3509926, 10.1093/imrn/rnv171
Reference: [16] Nguyen Van Thé L.: More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions.Fund. Math. 222 (2013), no. 1, 19–47. MR 3080786
Reference: [17] Pestov V. G.: On free actions, minimal flows, and a problem by Ellis.Trans. Amer. Math. Soc. 350 (1998), no. 10, 4149–4165. Zbl 0911.54034, MR 1608494, 10.1090/S0002-9947-98-02329-0
Reference: [18] Pestov V.: Some universal constructions in abstract topological dynamics.Topological Dynamics and Applications, Minneapolis, 1995, Contemp. Math., 215, Amer. Math. Soc., Providence, 1998, pages 83–99. MR 1603153
Reference: [19] Samuel P.: Ultrafilters and compactifications of uniform spaces.Trans. Amer. Math. Soc. 64 (1948), 100–132. MR 0025717, 10.1090/S0002-9947-1948-0025717-6
Reference: [20] Uspenskij V.: Compactifications of topological groups.Proc. of the Ninth Prague Topological Symposium, 2001, Topol. Atlas, North Bay, 2002, pages 331–346. MR 1906851
Reference: [21] Zucker A.: Topological dynamics of automorphism groups, ultrafilter combinatorics, and the generic point problem.Trans. Amer. Math. Soc. 368 (2016), no. 9, 6715–6740. MR 3461049, 10.1090/tran6685
Reference: [22] Zucker A.: Thick, syndetic, and piecewise syndetic subsets of Fraïssé structures.Topology Appl. 223 (2017), 1–12. MR 3633730, 10.1016/j.topol.2017.03.009


Files Size Format View
CommentatMathUnivCarolRetro_60-2019-1_1.pdf 417.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo