Previous |  Up |  Next

Article

Keywords:
prime; divisibility; exponent; Sándor-Luca's theorem
Summary:
Let $p_{1}, p_{2}, \cdots $ be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if $ k \geq 5 $, then $$ (p_{k+1}-1)! \mid (\tfrac {1}{2} (p_{k +1} - 1))! p_ {k}!, $$ which improves a previous result of the second author.
References:
[1] Atanassov, K. T.: Remark on József Sándor and Florian Luca's theorem. C. R. Acad. Bulg. Sci. 55 (2002), 9-14. MR 1938730 | Zbl 1011.11007
[2] Berend, D.: On the parity of exponents in the factorization of $n!$. J. Number Theory 64 (1997), 13-19 \99999DOI99999 10.1006/jnth.1997.2106 \goodbreak. DOI 10.1006/jnth.1997.2106 | MR 1450483 | Zbl 0874.11025
[3] Chen, Y. G., Zhu, Y. C.: On the prime power factorization of $n!$. J. Number Theory 82 (2000), 1-11. DOI 10.1006/jnth.1999.2477 | MR 1755150 | Zbl 0999.11015
[4] Dusart, P.: Explicit inequalities for $\psi(X)$, $\theta(X)$, $\pi(X)$ and prime numbers. C. R. Math. Acad. Sci., Soc. R. Can. 21 (1999), 53-59 French. MR 1697455 | Zbl 0935.11002
[5] Dusart, P.: The $k$-th prime is greater than $k(\log k +\log \log k - 1)$ for $k\geq 2$. Math. Comput. 68 (1999), 411-415. DOI 10.1090/S0025-5718-99-01037-6 | MR 1620223 | Zbl 0913.11039
[6] Erdős, P.: Note on products of consecutive integers. J. Lond. Math. Soc. 14 (1939), 194-198. DOI 10.1112/jlms/s1-14.3.194 | MR 0000022 | Zbl 0021.20704
[7] Erdős, P.: On a conjecture of Klee. Am. Math. Monthly 58 (1951), 98-101. DOI 10.2307/2308371 | MR 0040320 | Zbl 0042.27501
[8] Erdős, P., Graham, R. L.: Old and New Problems and Results in Combinatorial Number Theory. Monographs of L'Enseignement Mathématique 28. L'Enseignement Mathématique, Université de Genève, Genève (1980). MR 0592420 | Zbl 0434.10001
[9] Erdős, P., Selfridge, J. L.: The product of consecutive integers is never a power. Ill. J. Math. 19 (1975), 292-301. DOI 10.1215/ijm/1256050816 | MR 0376517 | Zbl 0295.10017
[10] Hildebrand, A., Tenenbaum, G.: Integers without large prime factors. J. Théor. Nombres Bordx. 5 (1993), 411-484. DOI 10.5802/jtnb.101 | MR 1265913 | Zbl 0797.11070
[11] Le, M.: A conjecture concerning the Smarandache dual function. Smarandache Notion J. 14 (2004), 153-155. MR 1650404 | Zbl 1259.11011
[12] Luca, F.: On a divisibility property involving factorials. C. R. Acad. Bulg. Sci. 53 (2000), 35-38. MR 1777831 | Zbl 0954.11008
[13] Luca, F., Stănică, P.: On the prime power factorization of $n!$. J. Number Theory 102 (2003), 298-305. DOI 10.1016/S0022-314X(03)00102-1 | MR 1997793 | Zbl 1049.11092
[14] Moree, P., Roskam, H.: On an arithmetical function related to Euler's totient and the discriminantor. Fibonacci Q. 33 (1995), 332-340. MR 1341262 | Zbl 0827.11002
[15] Nagura, J.: On the interval containing at least one prime number. Proc. Japan Acad. 28 (1952), 177-181. DOI 10.3792/pja/1195570997 | MR 0050615 | Zbl 0047.04405
[16] Rosser, J. B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6 (1962), 64-94. DOI 10.1215/ijm/1255631807 | MR 0137689 | Zbl 0122.05001
[17] Sándor, J.: On values of arithmetical functions at factorials I. Smarandache Notions J. 10 (1999), 87-94. MR 1682453 | Zbl 1115.11301
[18] Sándor, J.: On certain generalizations of the Smarandache function. Smarandache Notions J. 11 (2000), 202-212. MR 1764904
[19] Tenenbaum, G.: Introduction to Analytic and Probabilistic Number Theory. Cambridge Studies in Advanced Mathematics 46. Cambridge University Press, Cambridge (1995). MR 1342300 | Zbl 0831.11001
Partner of
EuDML logo