Previous |  Up |  Next

Article

Keywords:
linear continuity; Baire class one; discontinuity set; Banach space
Summary:
We prove that each linearly continuous function $f$ on $\mathbb R^n$ (i.e., each function continuous on all lines) belongs to the first Baire class, which answers a problem formulated by K.\,C. Ciesielski and D. Miller (2016). The same result holds also for $f$ on an arbitrary Banach space $X$, if $f$ has moreover the Baire property. We also prove (extending a known finite-dimensional result) that such $f$ on a separable $X$ is continuous at all points outside a first category set which is also null in any usual sense.
References:
[1] Ciesielski K. C., Miller D.: A continuous tale on continuous and separately continuous functions. Real Anal. Exchange 41 (2016), no. 1, 19–54. MR 3511935
[2] Kershner R.: The continuity of functions of many variables. Trans. Amer. Math. Soc. 53 (1943), 83–100. DOI 10.1090/S0002-9947-1943-0007522-5 | MR 0007522
[3] Kuratowski K.: Topology. Vol. I. Academic Press, New York, Państwowe Wydawnictwo Naukowe, Warszawa, 1966.
[4] Lebesgue H.: Sur les fonctions représentable analytiquement. J. Math. Pure Appl. (6) 1 (1905), 139–212 (French).
[5] Lukeš J., Malý J., Zajíček L.: Fine Topology Methods in Real Analysis and Potential Theory. Lecture Notes in Mathematics, 1189, Springer, Berlin, 1986. DOI 10.1007/BFb0075905 | MR 0861411 | Zbl 0607.31001
[6] Massera J. L., Schäffer J. J.: Linear differential equations and functional analysis. I. Ann. of Math. (2) 67 (1958), 517–573. DOI 10.2307/1969871 | MR 0096985
[7] Shkarin S. A.: Points of discontinuity of Gateaux-differentiable mappings. Sibirsk. Mat. Zh. 33 (1992), no. 5, 176–185 (Russian); translation in Siberian Math. J. 33 (1992), no. 5, 905–913. MR 1197083
[8] Slobodnik S. G.: Expanding system of linearly closed sets. Mat. Zametki 19 (1976), 67–84 (Russian); translation in Math. Notes 19 (1976), 39–48. MR 0409742
[9] Zajíček L.: On the points of multivaluedness of metric projections in separable Banach spaces. Comment. Math. Univ. Carolin. 19 (1978), no. 3, 513–523. MR 0508958
[10] Zajíček L.: On $\sigma$-porous sets in abstract spaces. Abstr. Appl. Anal. 2005 (2005), no. 5, 509–534. DOI 10.1155/AAA.2005.509 | MR 2201041 | Zbl 1098.28003
[11] Zajíček L.: Generic Fréchet differentiability on Asplund spaces via a.e. strict differentiability on many lines. J. Convex Anal. 19 (2012), no. 1, 23–48. MR 2934114
Partner of
EuDML logo