Previous |  Up |  Next


nonlinear output regulation; linear matrix inequality; twin rotor; real-time
This paper presents a novel error-feedback practical solution for real-time implementation of nonlinear output regulation. Sufficient and necessary conditions for both state- and error-feedback output regulation have been established for linear and nonlinear systems several decades ago. In their most general form, these solutions require solving a set of nonlinear partial differential equations, which may be hard or even impossible to solve analytically. In recent years, a methodology for dynamic calculation of the mappings required for state-feedback regulation has been put forward; following the latter, an error-feedback extension is hereby provided which, when combined with design conditions in the form of linear matrix inequalities, becomes suitable for real-time setups. Real-time results are presented for a nonlinear twin rotor MIMO system. Issues concerning the implementation as well as the solutions adopted, are discussed.
[1] Ahmed, Q., Bhatti, A. I., Iqbal, S.: Robust decoupling control design for twin rotor system using Hadamard weights. In: Control Applications, (CCA) and Intelligent Control, (ISIC), 2009 IEEE, pp. 1009-1014. DOI 10.1109/cca.2009.5281000
[2] Bernal, M., Marquez, R., Estrada, V., Castillo, B.: An element-wise linear matrix inequality approach for output regulation problems. In: World Automation Congress (WAC) 2012, Puerto Vallarta 2012, pp. 1-6.
[3] Bernal, M., Marquez, R., Estrada-Manzo, V., Castillo-Toledo, B.: Nonlinear output regulation via Takagi-Sugeno fuzzy mappings: A full-information LMI approach. In: IEEE International Conference on Fuzzy Systems 2012, pp. 1-7. DOI 10.1109/fuzz-ieee.2012.6251202
[4] {Boyd}, S., Ghaoui, L. E., Feron, E., Belakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Studies In Applied Mathematics 15, Philadelphia 1994. DOI 10.1137/1.9781611970777 | MR 1284712
[5] Byrnes, C. I., Isidori, A.: Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation. IEEE Trans. Automat. Control 48 (2003), 10, 1712-1723. DOI 10.1109/tac.2003.817926 | MR 2021420
[6] Byrnes, C. I., Isidori, A.: Nonlinear internal models for output regulation. IEEE Trans. Automat. Control 49 (2004), 12, 2244-2247. DOI 10.1109/tac.2004.838492 | MR 2106753
[7] Byrnes, C. I., Priscoli, F. D., Isidori, A.: Output regulation of uncertain nonlinear systems. Springer Science and Business Media, 2012. DOI 10.1007/978-1-4612-2020-6 | MR 2742099
[8] Davison, E.: The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans. Automat. Control 21 (1976), 1, 25-34. DOI 10.1109/tac.1976.1101137 | MR 0406616
[9] Duan, G. R., Yu, H. H.: LMIs in Control Systems: Analysis, Design and Applications. CRC Press, 2013. MR 3328859
[10] Ltd, Feedback instruments, Manual, East Sussex. TRMS 33-949S User: Twin Rotor MIMO System Control Experiments, 1998.
[11] Francis, B. A.: The linear multivariable regulator problem. SIAM J. Control Optim. 15 (1077), 486-505. DOI 10.1137/0315033 | MR 0446631
[12] Francis, B. A., Wonham, W. M.: The internal model principle for linear multivariable regulators. J. Appl. Math. Optim. 2 (1975), 170-194. DOI 10.1007/bf01447855 | MR 0389331
[13] Glauser, M., Lin, Z., Allaire, P. E.: Modeling and control of a partial body weight support system: an output regulation approach. IEEE Trans. Control Systems Technol. 18 (2010), 2, 480-490. DOI 10.1109/tcst.2009.2016953
[14] Henriques, J., Gil, P., Cardoso, A., Carvalho, P., Dourado, A.: Adaptive neural output regulation control of a solar power plant. Control Engrg. Practice 18 (2010), 10, 1183-1196. DOI 10.1016/j.conengprac.2010.06.001
[15] Isidori, A.: Nonlinear Control Systems. Third edition. Springer, London 1995. DOI 10.1007/978-1-84628-615-5 | MR 1410988
[16] Isidori, A., Byrnes, C. I.: Output regulation of nonlinear systems. {IEEE} Trans. Automat. Control 35 (1990) 2, 131-140. DOI 10.1109/9.45168 | MR 1038409 | Zbl 0989.93041
[17] Jensen, T. N., Wisniewski, R., DePersis, C., Kallesøe, C. S.: Output regulation of large-scale hydraulic networks with minimal steady state power consumption. Control Engrg. Practice 22 (2014), 103-113. DOI 10.1016/j.conengprac.2013.10.004
[18] Khalil, H.: Nonlinear Systems. Third edition. Prentice Hall, New Jersey 2002.
[19] Kim, W., Kim, H., Chung, C. C., Tomizuka, M.: Adaptive output regulation for the rejection of a periodic disturbance with an unknown frequency. IEEE Trans. Control Systems Technol. 19 (2011), 5, 1296-1304. DOI 10.1109/tcst.2010.2066276
[20] Lewis, F. L., Dawson, D. M., Abdallah, C. T.: Robot Manipulator Control: Theory and Practice. CRC Press, 2003. DOI 10.1201/9780203026953
[21] Mahony, R., Mareels, I., Bastin, G., Campion, G.: Static-state feedback laws for output regulation of non-linear systems. Control Engingrg. Practice 4 (1966), 7, 1009-1014. DOI 10.1016/0967-0661(96)00100-1
[22] Marconi, L., Praly, L.: Uniform practical nonlinear output regulation. IEEE Trans. Automat. Control 53 (2008), 5, 1184-1202. DOI 10.1109/tac.2008.923674 | MR 2445674
[23] Meda, J. A., Castillo, B.: Synchronization of chaotic systems from a fuzzy regulation approach. Fuzzy Sets Systems 160 (2009), 19, 2860-2875. DOI 10.1016/j.fss.2008.12.006 | MR 2573363
[24] Meda, J. A., Gomez, J. C., Castillo, B.: Exact output regulation for nonlinear systems described by {Takagi}-{Sugeno} fuzzy models. {IEEE} Trans. Fuzzy Systems 20 (2012), 2, 235-247. DOI 10.1109/TFUZZ.2011.2172689
[25] Nejjari, F., Rotondo, D., Puig, V., Innocenti, M.: LPV modelling and control of a Twin Rotor MIMO system. In: 19th Mediterranean Conference on Control and Automation (MED), IEEE 2011, pp. 1082-1087. DOI 10.1109/med.2011.5983178
[26] Pandey, S. K., Laxmi, V.: Optimal control of twin rotor MIMO system using LQR technique. Comput. Intell. Data Mining 31 (2015), 11-21. DOI 10.1007/978-81-322-2205-7_2
[27] Pavlov, A., Janssen, B., Wouw, N. Van de, Nijmeijer, H.: Experimental Output Regulation for a Nonlinear Benchmark System. IEEE Trans. Control Systems Technol. 15 (2007), 4, 786-793. DOI 10.1109/tcst.2006.890294 | MR 2190284
[28] Pratap, B., Purwar, S.: Neural network observer for twin rotor mimo system: an lmi based approach. In: The 2010 International Conference on Modelling, Identification and Control (ICMIC), IEEE 2010, pp. 539-544.
[29] Robles, R., Bernal, M.: Comments on Exact output regulation for nonlinear systems described by Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Systems 23 (2015), 1, 230-233. DOI 10.1109/tfuzz.2014.2321773
[30] Tanaka, K., Wang, H. O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley and Sons, New York 2001. DOI 10.1002/0471224596
[31] Tao, C.-W., Taur, J.-S., Chang, Y.-H., Chang, C.-W.: A novel fuzzy-sliding and fuzzy-integral-sliding controller for the twin-rotor multi-input-multi-output system. IEEE Trans. Fuzzy Systems 18 (2010), 5, 893-905. DOI 10.1109/tfuzz.2010.2051447
[32] Tapia, A., Márquez, R., Bernal, M., Cortez, J.: Sliding subspace design based on linear matrix inequalities. Kybernetika 50 (2014), 3, 633-641. MR 3245539
[33] Tarn, T. J., Sanposh, P., Cheng, D., Zhang, M.: Output Regulation for Nonlinear Systems: Some Recent Theoretical and Experimental Results. IEEE Trans. Control Systems Technol. 13 (2005), 605-610. DOI 10.1109/tcst.2004.841674
[34] Umemura, Y., Sakamoto, N.: Optimal servo design for lock-up slip control for torque converter nonlinear output regulation approach. IEEE Trans. Control Systems Technol. 23 (2015), 4, 1587-1593. DOI 10.1109/tcst.2014.2366077
[35] Yoon, S. Y., Di, L., Lin, Z.: Unbalance compensation for AMB systems with input delay: An output regulation approach. Control Engrg. Practice 46 (2016), 166-175. DOI 10.1016/j.conengprac.2015.11.002 | MR 3318613
Partner of
EuDML logo