[1] Alfsen E. M.: 
Compact Convex Sets and Boundary Integrals. Ergebnisse der Mathematik und ihrer Grenzgebiete, 57, Springer, New York, 1971. 
MR 0445271 | 
Zbl 0209.42601[2] Armitage D. H., Gardiner S. J.: 
Classical Potential Theory. Springer Monographs in Mathematics, Springer, London, 2001. 
MR 1801253 | 
Zbl 0972.31001[4] Boboc N., Bucur Gh.: 
Natural localization and natural sheaf property in standard H-cones of functions. I. Rev. Roumaine Math. Pures Appl. 30 (1985), no. 1, 1–21. 
MR 0789583[5] Boboc N., Bucur G., Cornea A.: 
Order and Convexity in Potential Theory, H-cones. Lecture Notes in Mathematics, 853, Springer, Berlin, 1981. 
DOI 10.1007/BFb0090454 | 
MR 0613980[6] Brelot M.: 
Sur le principe des singularités positives et la topologie de R. S. Martin. Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N. S.) 23 (1948), 113–138 (French). 
MR 0026724[7] Brelot M.: 
Sur le théorème de partition de Mme R. M. Hervé. Rocky Mountain J. Math. 10 (1980), no. 1, 293–302 (French). 
MR 0573877[8] Choquet G.: 
Lectures on Analysis, Vol. II: Representation Theory. W. A. Benjamin, New York, 1969. 
MR 0250012[9] Constantinescu C., Cornea A.: 
Potential Theory on Harmonic spaces. Die Grundlehren der mathematischen Wissenschaften, 158, Springer, Heidelberg, 1972. 
MR 0419799[10] Dellacherie C., Meyer P.-A.: 
Probabilités et potentiel. Chapitres XII–XVI, Publications de l'Institut de Mathématiques de l'Université de Strasbourg, Actualités Scientifiques et Industrielles, 1417, Hermann, Paris, 1987 (French). 
MR 0488194 | 
Zbl 0624.60084[11] Doob J. L.: 
Classical Potential Theory and Its Probabilistic Counterparts. Grundlehren der Mathematischen Wissenschaften, 262, Springer, New Yourk, 1984. 
MR 0731258[12] El Kadiri M.: 
Sur la décomposition de Riesz et la représentation intégrale des fonctions finement surharmoniques. Positivity 4 (2000), no. 2, 105–114 (French. English summary). 
DOI 10.1023/A:1009869923566 | 
MR 1755674[13] El Kadiri M.: 
Fonctions séparément finement surharmoniques. Positivity 7 (2003), no. 3, 245–256 (French. English, French summary). 
MR 2018599[14] El Kadiri M., Fuglede B.: 
Martin boundary of a fine domain and a Fatou-Naïm-Doob theorem for finely superharmonic functions. Potential Anal. 44 (2016), no. 1, 1–25. 
DOI 10.1007/s11118-015-9495-0 | 
MR 3455206[18] Fuglede B.: 
Sur la fonction de Green pour un domaine fin. Ann. Inst. Fourier (Grenoble) 25 (1975), no. 3–4, 201–206 (French. English summary). 
DOI 10.5802/aif.579 | 
MR 0430284[22] Fuglede B.: 
Représentation intégrale des potentiels fins. C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 5, 129–132 (French. English summary). 
MR 0779693[23] Fuglede B.: 
Fine potential theory. Potential theory—surveys and problems, Prague, 1987, Lecture Notes in Math., 1344, Springer, Berlin, 1988, pages 81–97. 
DOI 10.1007/BFb0103345 | 
MR 0973882[26] Le Jan Y.: 
Quasi-continuous functions associated with Hunt processes. Proc. Amer. Math. Soc. 86 (1982), no. 1, 133–138. 
MR 0663882[28] Le Jan Y.: 
Fonctions “càd-làg" sur les trajectoires d'un processus de Ray. Théorie du Potentiel, Orsay, 1983, Lecture Notes in Math., 1096, Springer, Berlin, 1984, pages 412–418 (French). 
DOI 10.1007/BFb0100122 | 
MR 0890369[29] Meyer P. A.: 
Brelot's axiomatic theory of the Dirichlet problem and Hunt's theory. Ann. Inst. Fourier (Grenoble) 13 (1963), fasc. 2, 357–372. 
DOI 10.5802/aif.149 | 
MR 0162956