Previous |  Up |  Next

Article

Keywords:
strong McShane integral; McShane variational measure; Banach space, $m$-dimensional Euclidean space; compact non-degenerate $m$-dimensional interval
Summary:
We present the full descriptive characterizations of the strong McShane integral (or the variational McShane integral) of a Banach space valued function $f\colon W \to X$ defined on a non-degenerate closed subinterval $W$ of $\mathbb {R}^{m}$ in terms of strong absolute continuity or, equivalently, in terms of McShane variational measure $V_{\mathcal {M}} F$ generated by the primitive $F\colon \mathcal {I}_{W} \to X$ of $f$, where $\mathcal {I}_{W}$ is the family of all closed non-degenerate subintervals of $W$.
References:
[1] Candeloro, D., Piazza, L. Di, Musiał, K., Sambucini, A. R.: Gauge integrals and selections of weakly compact valued multifunctions. J. Math. Anal. Appl. 441 (2016), 293-308. DOI 10.1016/j.jmaa.2016.04.009 | MR 3488058 | Zbl 1339.28016
[2] Candeloro, D., Piazza, L. Di, Musiał, K., Sambucini, A. R.: Relations among gauge and Pettis integrals for $cwk(X)$-valued multifunctions. Ann. Mat. Pura Appl. (4) 197 (2018), 171-183. DOI 10.1007/s10231-017-0674-z | MR 3747527 | Zbl 06837507
[3] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15. AMS, Providence (1977). MR 0453964 | Zbl 0369.46039
[4] Piazza, L. Di: Variational measures in the theory of the integration in $\mathbb R^m$. Czech. Math. J. 51 (2001), 95-110. DOI 10.1023/A:1013705821657 | MR 1814635 | Zbl 1079.28500
[5] Piazza, L. Di, Musiał, K.: A characterization of variationally McShane integrable Banach-space valued functions. Ill. J. Math. 45 (2001), 279-289. DOI 10.1215/ijm/1258138268 | MR 1849999 | Zbl 0999.28006
[6] Dunford, N., Schwartz, J. T.: Linear Operators I. General Theory. Pure and Applied Mathematics. Vol. 7. Interscience Publishers, New York (1958). MR 0117523 | Zbl 0084.10402
[7] Folland, G. B.: Real Analysis. Modern Techniques and Their Applications. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley, New York (1999). MR 1681462 | Zbl 0924.28001
[8] Fremlin, D. H.: The generalized McShane integral. Ill. J. Math. 39 (1995), 39-67. DOI 10.1215/ijm/1255986628 | MR 1299648 | Zbl 0810.28006
[9] Gordon, R. A.: The Denjoy extension of the Bochner, Pettis, and Dunford integrals. Stud. Math. 92 (1989), 73-91. DOI 10.4064/sm-92-1-73-91 | MR 0984851 | Zbl 0681.28006
[10] Gordon, R. A.: The McShane integral of Banach-valued functions. Ill. J. Math. 34 (1990), 557-567. DOI 10.1215/ijm/1255988170 | MR 1053562 | Zbl 0685.28003
[11] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). DOI 10.1090/gsm/004 | MR 1288751 | Zbl 0807.26004
[12] Kaliaj, S. B.: Descriptive characterizations of Pettis and strongly McShane integrals. Real Anal. Exch. 39 (2014), 227-238. DOI 10.14321/realanalexch.39.1.0227 | MR 3261908 | Zbl 1298.28025
[13] Lee, T.-Y.: Some full characterizations of the strong McShane integral. Math. Bohem. 129 (2004), 305-312. DOI 10.21136/MB.2004.134144 | MR 2092716 | Zbl 1080.26006
[14] Lee, T. Y.: Henstock-Kurzweil Integration on Euclidean Spaces. Series in Real Analysis 12. World Scientific, Hackensack (2011). DOI 10.1142/7933 | MR 2789724 | Zbl 1246.26002
[15] Marraffa, V.: The variational McShane integral in locally convex spaces. Rocky Mt. J. Math. 39 (2009), 1993-2013. DOI 10.1216/RMJ-2009-39-6-1993 | MR 2575890 | Zbl 1187.28019
[16] McShane, E. J.: Unified Integration. Pure and Applied Mathematics 107. Academic Press, Orlando (Harcourt Brace Jovanovich, Publishers) (1983). MR 0740710 | Zbl 0551.28001
[17] Musiał, K.: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces. Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159-165. MR 0922998 | Zbl 0636.28005
[18] Musiał, K.: Topics in the theory of Pettis integration. Rend. Ist. Math. Univ. Trieste 23 (1991), 177-262. MR 1248654 | Zbl 0798.46042
[19] Musiał, K.: Pettis integral. Handbook of Measure Theory. Vol. I. and II. North-Holland, Amsterdam (2002), 531-586 E. Pap. DOI 10.1016/B978-044450263-6/50013-0 | MR 1954622 | Zbl 1043.28010
[20] Pfeffer, W. F.: Derivation and Integration. Cambridge Tracts in Mathematics 140. Cambridge University Press, Cambridge (2001). DOI 10.1017/CBO9780511574764 | MR 1816996 | Zbl 0980.26008
[21] Schwabik, Š., Ye, G.: Topics in Banach Space Integration. Series in Real Analysis 10. World Scientific, Hackensack (2005). DOI 10.1142/9789812703286 | MR 2167754 | Zbl 1088.28008
[22] Talagrand, M.: Pettis integral and measure theory. Mem. Am. Math. Soc. 51 (1984), 224 pages. DOI 10.1090/memo/0307 | MR 0756174 | Zbl 0582.46049
[23] Thomson, B. S.: Derivates of interval functions. Mem. Am. Math. Soc. 452 (1991), 96 pages. DOI 10.1090/memo/0452 | MR 1078198 | Zbl 0734.26003
[24] Thomson, B. S.: Differentiation. Handbook of Measure Theory. Volume I. and II. North-Holland, Amsterdam (2002), 179-247 E. Pap. DOI 10.1016/B978-044450263-6/50006-3 | MR 1954615 | Zbl 1028.28001
[25] Wu, C., Yao, X.: A Riemann-type definition of the Bochner integral. J. Math. Study 27 (1994), 32-36. MR 1318255 | Zbl 0947.28010
[26] Ye, G.: On Henstock-Kurzweil and McShane integrals of Banach space-valued functions. J. Math. Anal. Appl. 330 (2007), 753-765. DOI 10.1016/j.jmaa.2006.08.020 | MR 2308405 | Zbl 1160.46028
Partner of
EuDML logo