Previous |  Up |  Next


fractional systems; semilinear control systems; Rothe's fixed point theorem; delays in control; pseudo-transition matrix; the Caputo derivative
The paper presents finite-dimensional dynamical control systems described by semilinear fractional-order state equations with multiple delays in the control and nonlinear function $f$. The relative controllability of the presented semilinear system is discussed. Rothe's fixed point theorem is applied to study the controllability of the fractional-order semilinear system. A control that steers the semilinear system from an initial complete state to a final state at time $t>0$ is presented. A numerical example is provided to illustrate the obtained theoretical results and a practical example is given to show a possible application of the study.
[1] Babiarz, A., Czornik, A., Niezabitowski, M.: Output controllability of the discrete-time linear switched systems. Nonlinear Analysis: Hybrid Systems 21 (2016), 1-10. DOI 10.1016/j.nahs.2015.12.004 | MR 3500067
[2] Babiarz, A., Niezabitowski, M.: Controllability Problem of Fractional Neutral Systems: A Survey. Math. Problems Engrg. 4715861 (2017), 1-15. DOI 10.1155/2017/4715861 | MR 3603402
[3] Balachandran, K., Kokila, J.: On the controllability of fractional dynamical systems. Int. J. Appl. Math. Comput. Sci. 22 (2012), 523-531. DOI 10.2478/v10006-012-0039-0 | MR 3025259
[4] Balachandran, K., Zhou, Y., Kokila, J.: Relative controllability of fractional dynamical systems with delays in control. Commun. Nonlinear Sci. Numer. Simul. 17 MR 2913988 | Zbl 1248.93022
[5] Balachandran, K., Park, J. Y., Trujillo, J. J.: Controllability of nonlinear fractional dynamical systems. Nonlinear Analysis 75 (2012), 1919-1926. DOI 10.1016/ | MR 2870885
[6] Balachandran, K., Kokila, J.: Constrained controllability of fractional dynamical systems. Numer. Functional Anal. Optim. 34 (2013), 1187-1205. DOI 10.1080/01630563.2013.778868 | MR 3175614
[7] Balachandran, K., Kokila, J.: Controllability of fractional dynamical systems with prescribed controls. IET Control Theory Appl.7 (2013), 1242-1248. DOI 10.1049/iet-cta.2012.0049 | MR 3175614
[8] Balachandran, K.: Controllability of Nonlinear Fractional Delay Dynamical Systems with Multiple Delays in Control. Lect. Notes Electr. Engrg. Theory and Applications of Non-integer Order Systems 407 (2016), 321-332. DOI 10.1007/978-3-319-45474-0_29 | MR 3638562
[9] Chen, Y. Q., Ahn, H. S., Xue, D.: Robust controllability of interval fractional order linear time invariant systems. Signal Processes 86 (2006), 2794-2802. DOI 10.1016/j.sigpro.2006.02.021
[10] Deng, W., Li, C., Lu, J.: Stability analysis of linear fractional differential systems with multiple time delays. Nonlinear Dynamics 48 (2007), 409-416. DOI 10.1007/s11071-006-9094-0 | MR 2312588
[11] Isac, G.: On Rothe's fixed point theorem in a general topological vector space. An. St. Univ. Ovidius Constanta 12 (2004), 127-134. MR 2209122
[12] Iturriaga, E., Leiva, H.: A characterization of semilinear surjective operators and applications to control problems. Appl. Math. 1 (2010), 265-273. DOI 10.4236/am.2010.14033
[13] Kaczorek, T.: Selected Problems of Fractional Systems Theory. Lect. Notes Control Inform. Sci. 2011. DOI 10.1007/978-3-642-20502-6 | MR 2798773 | Zbl 1221.93002
[14] Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits. Studies in Systems, Decision and Control, 2015. DOI 10.1007/978-3-319-11361-6 | MR 3497539 | Zbl 1354.93001
[15] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 2006. DOI 10.1016/s0304-0208(06)x8001-5 | MR 2218073 | Zbl 1092.45003
[16] Klamka, J.: Controllability of Dynamical Systems. Kluwer Academic Publishers, 1991. MR 1134783 | Zbl 0818.93002
[17] Klamka, J.: Controllability and minimum energy control problem of fractional discrete-time systems. New Trends Nanotechology and Fractional Calculus Applications, Springer, 2010. DOI 10.1007/978-90-481-3293-5_45 | MR 2642623
[18] Klamka, J.: Local controllability of fractional discrete-time semilinear systems. Acta Mechanica at Automatica 5 (2011), 55-58.
[19] Klamka, J.: Controllability of dynamical systems. A survey. Bull. Pol. Ac.: Tech. Sci. 61 (2013), 335-342. DOI 10.2478/bpasts-2013-0031 | MR 1134783
[20] Klamka, J., Czornik, A., Niezabitowski, M., Babiarz, A.: Controllability and minimum energy control of linear fractional discrete-time infinite-dimensional systems. In: Proc. 11th IEEE International Conference on Control and Automation, Taiwan 2014, pp. 1210-1214. DOI 10.1109/icca.2014.6871094 | MR 3728359
[21] Klamka, J., Czornik, A.: Controllability problem of positive discrete fractional systems with constant delay. In: Proc. 17th International Carpathian Control Conference 2016, pp. 324-328. DOI 10.1109/carpathiancc.2016.7501117
[22] Klamka, J., Sikora, B.: New controllability Criteria for Fractional Systems with Varying Delays. Lect. Notes Electr. Engrg. Theory and Applications of Non-integer Order Systems 407 (2017), 333-344. DOI 10.1007/978-3-319-45474-0_30
[23] Leiva, H.: Rothe's fixed point theorem and controllability of semilinear nonautonomous systems. Systems Control Lett. 67 (2014), 14-18. DOI 10.1016/j.sysconle.2014.01.008 | MR 3183375
[24] Luyben, W. L.: Process Modelling, Simulation and Control for Chemical Engineers. McGraw-Hill, Chemical Engineering Series, International Editions, 1990. DOI 10.1002/pol.1973.130110416
[25] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Calculus. Villey 1993. MR 1219954
[26] Monje, A., Chen, Y., Viagre, B. M., Xue, D., Feliu, V.: Fractional-order Systems and Controls. Fundamentals and Applications. Springer-Verlag 2010. DOI 10.1007/978-1-84996-335-0 | MR 3012798
[27] Nirmala, R. J., Balachandran, K., Rodriguez-Germa, L., Trujillo, J. J.: Controllability of nonlinear fractional delay dynamical systems. Reports Math. Physics 77 (2016), 87-104. DOI 10.1016/s0034-4877(16)30007-6 | MR 3461800
[28] Odibat, Z. M.: Analytic study on linear systems of fractional differential equations. Computers Math. Appl. 59 (2010), 1171-1183. DOI 10.1016/j.camwa.2009.06.035 | MR 2579481
[29] Oldham, K. B., Spanier, J.: The Fractional Calculus. Academic Press 1974. MR 0361633 | Zbl 0292.26011
[30] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. In: Mathematics in Science and Engineering, Academic Press 1999. MR 1658022 | Zbl 0924.34008
[31] Sabatier, J., Agrawal, O. P., Machado, J. A Tenreiro: Advances in Fractional Calculus. In: Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag 2007. DOI 10.1007/978-1-4020-6042-7 | MR 2432163
[32] Sakthivel, R., Ren, Y., Mahmudov, N.I.: On the approximate controllability of semilinear fractional differential systems. Computers Math. Appl. 62 (2011), 1451-1459. DOI 10.1016/j.camwa.2011.04.040 | MR 2824732
[33] Sakthivel, R., Ganesh, R., Ren, Y., Anthoni, S. M.: Approximate controllability of nonlinear fractional dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 3498-3508. DOI 10.1016/j.cnsns.2013.05.015 | MR 3081379
[34] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications. Gordan and Breach Science Publishers 1993. MR 1347689 | Zbl 0818.26003
[35] Sikora, B.: Controllability of time-delay fractional systems with and without constraints. IET Control Theory Appl. 10 (2016), 320-327. DOI 10.1049/iet-cta.2015.0935 | MR 3468656
[36] Sikora, B.: Controllability criteria for time-delay fractional systems with a retarded state. Int. J. Appl. Math. Computer Sci. 26 (2016), 521-531. DOI 10.1515/amcs-2016-0036 | MR 3560625 | Zbl 1347.93057
[37] Sikora, B., Klamka, J.: Constrained controllability of fractional linear systems with delays in control. Systems Control Lett. 106 (2017), 9-15. DOI 10.1016/j.sysconle.2017.04.013 | MR 3681007
[38] Sikora, B., Klamka, J.: Cone-type constrained relative controllability of semilinear fractional systems with delays. Kybernetika 53 (2017), 370-381. DOI 10.14736/kyb-2017-2-0370 | MR 3661357
[39] Smart, J. D. R.: Fixed Points Theorems. Cambridge University Press, 1974. MR 0467717
[40] Trzasko, W.: Reachability and controllability of positive fractional discrete-time systems with delay. J. Automat. Mobile Robotics Intell. Systems 2 (2008), 43-47.
[41] Wang, J., Zhou, Y.: Complete controllability of fractional evolution systems. Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 4346-4355. DOI 10.1016/j.cnsns.2012.02.029 | MR 2930338
[42] Wei, J.: The controllability of fractional control systems with control delay. Computers Math. Appl. 64 (2012), 3153-3159. DOI 10.1016/j.camwa.2012.02.065 | MR 2989343 | Zbl 1268.93027
Partner of
EuDML logo