Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
dynamic contact problem; limited interpenetration; viscoelastic plate; existence of solution
Summary:
Solvability of the rational contact with limited interpenetration of different kind of viscolastic plates is proved. The biharmonic plates, von Kármán plates, Reissner-Mindlin plates, and full von Kármán systems are treated. The viscoelasticity can have the classical (``short memory'') form or the form of a certain singular memory. For all models some convergence of the solutions to the solutions of the Signorini contact is proved provided the thickness of the interpenetration tends to zero.
References:
[1] Bock, I., Jarušek, J.: Unilateral dynamic contact of viscoelastic von Kármán plates. Adv. Math. Sci. Appl. 16 (2006), 175-187. MR 2253231 | Zbl 1110.35049
[2] Bock, I., Jarušek, J.: Unilateral dynamic contact of von Kármán plates with singular memory. Appl. Math., Praha 52 (2007), 515-527. DOI 10.1007/s10492-007-0030-5 | MR 2357578 | Zbl 1164.35447
[3] Bock, I., Jarušek, J.: Dynamic contact problem for a bridge modeled by a viscoelastic full von Kármán system. Z. Angew. Math. Phys. 61 (2010), 865-876. DOI 10.1007/s00033-010-0066-3 | MR 2726632 | Zbl 1273.74352
[4] Bock, I., Jarušek, J.: Unilateral dynamic contact problem for viscoelastic Reissner-Mindlin plates. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 4192-4202. DOI 10.1016/j.na.2011.03.054 | MR 2803022 | Zbl 1402.74068
[5] Borwein, J. M., Zhu, Q. J.: Techniques of Variational Analysis. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 20, Springer, New York (2005). DOI 10.1007/0-387-28271-8 | MR 2144010 | Zbl 1076.49001
[6] Eck, C., Jarušek, J., Krbec, M.: Unilateral Contact Problems. Variational Methods and Existence Theorems. Pure and Applied Mathematics (Boca Raton) 270, Chapman & Hall/CRC, Boca Raton (2005). DOI 10.1201/9781420027365 | MR 2128865 | Zbl 1079.74003
[7] Eck, C., Jarušek, J., Stará, J.: Normal compliance contact models with finite interpenetration. Arch. Ration. Mech. Anal. 208 (2013), 25-57. DOI 10.1007/s00205-012-0602-8 | MR 3021543 | Zbl 1320.74083
[8] Jarušek, J.: Static semicoercive normal compliance contact problem with limited interpenetration. Z. Angew. Math. Phys. 66 (2015), 2161-2172. DOI 10.1007/s00033-015-0539-5 | MR 3412294 | Zbl 1327.35364
[9] Jarušek, J., Stará, J.: Solvability of a rational contact model with limited interpenetration in viscoelastodynamics. Math. Mech. Solids 23 (2018), 1040-1048. DOI 10.1177/1081286517703262 | MR 3825900 | Zbl 1401.74218
[10] Koch, H., Stachel, A.: Global existence of classical solutions to the dynamical von Kármán equations. Math. Methods Appl. Sci. 16 (1993), 581-586. DOI 10.1002/mma.1670160806 | MR 1233041 | Zbl 0778.73029
[11] Lagnese, J. E.: Boundary Stabilization of Thin Plates. SIAM Studies in Applied Mathematics 10, Society for Industrial and Applied Mathematics, Philadelphia (1989). DOI 10.1137/1.9781611970821 | MR 1061153 | Zbl 0696.73034
[12] Signorini, A.: Sopra alcune questioni di statica dei sistemi continui. Ann. Sc. Norm. Super. Pisa, II. Ser. 2 (1933), 231-251 Italian \99999JFM99999 59.0738.01. MR 1556704
[13] Signorini, A.: Questioni di elasticità non linearizzata e semilinearizzata. Rend. Mat. Appl., V. Ser. 18 (1959), 95-139 Italian. MR 0118021 | Zbl 0091.38006
Partner of
EuDML logo