Previous |  Up |  Next

Article

Title: Growth of weighted volume and some applications (English)
Author: Milijević, Mirjana
Author: Yapu, Luis P.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 56
Issue: 1
Year: 2020
Pages: 1-10
Summary lang: English
.
Category: math
.
Summary: We define cut-off functions in order to allow higher growth for Dirichlet energy. Our results are generalizations of the classical Cheng-Yau’s growth conditions of parabolicity. Finally we give some applications to the function theory of Kähler and quaternionic-Kähler manifolds. (English)
Keyword: volume growth
Keyword: parabolic manifolds
Keyword: weighted parabolic manifolds
MSC: 53C20
MSC: 53C21
idZBL: Zbl 07177875
idMR: MR4075883
DOI: 10.5817/AM2020-1-1
.
Date available: 2020-03-02T09:02:10Z
Last updated: 2020-08-26
Stable URL: http://hdl.handle.net/10338.dmlcz/148029
.
Reference: [1] Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications.Comm. Pure Appl. Math. 28 (3) (1975), 333–354. Zbl 0312.53031, MR 0385749, 10.1002/cpa.3160280303
Reference: [2] Corlette, K.: Archimedean superrigidity and hyperbolic geometry.Ann. of Math. (2) 135 (1) (1992), 165–182. MR 1147961, 10.2307/2946567
Reference: [3] Greene, R.E., Wu, H.: Function theory on manifolds which possesses a pole.Lecture Notes in Math., vol. 699, Springer-Verlag, Berlin and New York, 1979. MR 0521983, 10.1007/BFb0063413
Reference: [4] Grigoryan, A.A.: On the existence of a Green function on a manifold.Uspekhi Mat. Nauk 38 (1983), 161–162, (Russian), English translation: Russian Math. Surveys 38 (1983), no. 1, 190–191. MR 0693728
Reference: [6] Grigoryan, A.A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds.Bull. Amer. Math. Soc. 36 (2) (1999), 135–249. MR 1659871, 10.1090/S0273-0979-99-00776-4
Reference: [7] Hua, B., Liu, S., Xia, C.: Liouville theorems for f-harmonic maps into Hadamard Spaces.Pacific J. Math. 290 (2017), 381–402. MR 3681112, 10.2140/pjm.2017.290.381
Reference: [8] Jost, J.: Riemannian geometry and geometric analysis.Springer, Berlin, 2017. MR 3726907
Reference: [9] Karp, L.: Subharmonic functions, harmonic mappings and isometric immersions.Seminar on Differential Geometry (Yau, S.T., ed.), Ann. Math. Stud. 102, Princeton, 1982.
Reference: [10] Kong, S., Li, P., Zhou, D.: Spectrum of the Laplacian on Quaternionic Kähler manifolds.J. Differential Geom. 78 92) (2008), 295–332. MR 2394025, 10.4310/jdg/1203000269
Reference: [11] Lam, K-H.: Spectrum of the Laplacian on manifolds with Spin(9) holonomy.Math. Res. Lett. 15 (6) (2018), 1167–1186. MR 2470392, 10.4310/MRL.2008.v15.n6.a8
Reference: [12] Li, P.: On the structure of complete Kähler manifolds with nonnegative curvature near infinity.Invent. Math. 99 (1990), 579–600. MR 1032881, 10.1007/BF01234432
Reference: [13] Li, P.: Curvature and function theory on Riemannian manifolds.Surveys in Differential Geometry, vol. 7, International Press, Cambridge, 2002, Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer, pp. 375–432.
Reference: [14] Munteanu, O., Wang, J.: Kähler manifolds with real holomorphic vector fields.Math. Ann. 363 (2015), 893–911. MR 3412346, 10.1007/s00208-015-1192-1
Reference: [15] Rigolli, M., Setti, A.: Liouville type theorems for $\phi $ subharmonic functions.Rev. Mat. Iberoamerican 17 (2001), 471–521. MR 1900893, 10.4171/RMI/302
Reference: [16] Ruppenthal, J.: Parabolicity of the regular locus of complex varieties.Proc. Amer. Math. Soc. 144 (2016), 225–233. MR 3415591, 10.1090/proc12718
Reference: [17] Sampson, J.H.: Applications to harmonic maps to Kähler geometry.Complex differential geometry and nonlinear differential equation, Amer. Math. Soc., Providence, RI, Contemp. Math. ed., 1986. MR 0833809
Reference: [18] Siu, Y.T.: The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifold.Ann. of Math. (2) 112 (1) (1980), 73–111. MR 0584075, 10.2307/1971321
Reference: [19] Tasayco, D., Zhou, D.: Uniqueness of grim hyperplanes for mean curvature flows.Arch. Math. (Basel) 109 (2) (2017), 191–200. MR 3673637, 10.1007/s00013-017-1057-9
Reference: [20] Varopoulos, N.Th.: Potential theory and diffusion of Riemannian manifolds.Conference on Harmonic Analysis in honor of Antoni Zygmund, vol. I, II, Wadsworth Math. Ser., Wadsworth, Belmont, Calif., 1983, pp. 821–837. MR 0730112
Reference: [21] Vieira, M.: Harmonic forms on manifolds with non-negative Bakry-Émery-Ricci curvature.Arch. Math. (Basel) 101 (2013), 581–590. MR 3133732, 10.1007/s00013-013-0594-0
.

Files

Files Size Format View
ArchMathRetro_056-2020-1_1.pdf 512.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo