Previous |  Up |  Next


Title: Relative weak derived functors (English)
Author: Prabakaran, Panneerselvam
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 1
Year: 2020
Pages: 35-50
Summary lang: English
Category: math
Summary: Let $R$ be a ring, $n$ a fixed non-negative integer, ${\mathscr{W I}}$ the class of all left $R$-modules with weak injective dimension at most $n$, and ${\mathscr{W F}}$ the class of all right $R$-modules with weak flat dimension at most $n$. Using left (right) ${\mathscr{W I}}$-resolutions and the left derived functors of Hom we study the weak injective dimensions of modules and rings. Also we prove that $- \otimes -$ is right balanced on ${\mathscr{M}}_R \times {_R{\mathscr{M}}}$ by ${\mathscr{W F}} \times {\mathscr{W I}}$, and investigate the global right ${\mathscr{W I}}$-dimension of $_R{\mathscr{M}}$ by right derived functors of $\otimes$. (English)
Keyword: weak injective module
Keyword: weak flat module
Keyword: weak injective dimension
Keyword: weak flat dimension
MSC: 16E10
MSC: 16E30
MSC: 18G25
idZBL: Zbl 07217157
idMR: MR4093428
DOI: 10.14712/1213-7243.2020.015
Date available: 2020-04-30T11:15:02Z
Last updated: 2020-08-26
Stable URL:
Reference: [1] Ding N.: On envelopes with the unique mapping property.Comm. Algebra. 24 (1996), no. 4, 1459–1470. MR 1380605, 10.1080/00927879608825646
Reference: [2] Enochs E. E., Jenda O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics, 30, Walter de Gruyter, Berlin, 2000. Zbl 0952.13001, MR 1753146
Reference: [3] Enochs E. E., Huang Z.: Injective envelopes and (Gorenstein) flat covers.Algebr. Represent. Theory 15 (2012), no. 6, 1131–1145. MR 2994019, 10.1007/s10468-011-9282-6
Reference: [4] Gao Z., Wang F.: Weak injective and weak flat modules.Comm. Algebra 43 (2015), no. 9, 3857–3868. MR 3360853, 10.1080/00927872.2014.924128
Reference: [5] Gao Z., Huang Z.: Weak injective covers and dimension of modules.Acta Math. Hungar. 147 (2015), no. 1, 135–157. MR 3391518, 10.1007/s10474-015-0540-7
Reference: [6] Göbel R., Trlifaj J.: Approximations and Endomorphism Algebra of Modules.De Gruyter Expositions in Mathematics, 41, Walter de Gruyter, Berlin, 2006. MR 2251271
Reference: [7] Rotman J. J.: An Introduction to Homological Algebra.Pure and Applied Mathematics, 85, Academic Press, New York, 1979. Zbl 1157.18001, MR 0538169
Reference: [8] Stenström B.: Coherent rings and $FP$-injective modules.J. London Math. Soc. (2) 2 (1970), 323–329. MR 0258888, 10.1112/jlms/s2-2.2.323
Reference: [9] Xu J.: Flat covers of modules.Lecture Notes in Mathematics, 1634, Springer, Berlin, 1996. MR 1438789, 10.1007/BFb0094173
Reference: [10] Zeng Y., Chen J.: Envelopes and covers by modules of finite $FP$-injective dimensions.Comm. Algebra. 38 (2010), no. 10, 3851–3867. MR 2760695, 10.1080/00927870903200851
Reference: [11] Zhang D., Ouyang B.: On $n$-coherent rings and $(n, d)$-injective modules.Algebra Colloq. 22 (2015), no. 2, 349–360. MR 3336067, 10.1142/S1005386715000309
Reference: [12] Zhao T.: Homological properties of modules with finite weak injective and weak flat dimensions.Bull. Malays. Math. Sci. Soc. 41 (2018), no. 2, 779–805. MR 3781545

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo