Previous |  Up |  Next


event-based communication protocol; fading measurements; stochastic coupling strength; nonlinear dynamical networks; monotonicity analysis
This paper is concerned with the design of event-based state estimation algorithm for nonlinear complex networks with fading measurements and stochastic coupling strength. The event-based communication protocol is employed to save energy and enhance the network transmission efficiency, where the changeable event-triggered threshold is adopted to adjust the data transmission frequency. The phenomenon of fading measurements is described by a series of random variables obeying certain probability distribution. The aim of the paper is to propose a new recursive event-based state estimation strategy such that, for the admissible linearization error, fading measurements and stochastic coupling strength, a minimum upper bound of estimation error covariance is given by designing the estimator gain. Furthermore, the monotonicity relationship between the trace of the upper bound of estimation error covariance and the fading probability is pointed out from the theoretical aspect. Finally, a simulation example is used to show the effectiveness of developed state estimation algorithm.
[1] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Physics Reports 424 (2006), 4-5. DOI 10.1016/j.physrep.2005.10.009 | MR 2193621
[2] Calafiore, G.: Reliable localization using set-valued nonlinear filters. IEEE Trans. Systems Man Cybernet. Part A-Systems and Humans 35 (2005), 189-197. DOI 10.1109/tsmca.2005.843383
[3] Chen, W., Ding, D. R., Ge, X. H., Han, Q.-L., Wei, G. L.: $H_\infty$ containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case. IEEE Trans. Cybernet. (2018), 1-11. DOI 10.1109/tcyb.2018.2885567
[4] Chen, Y. G., Fei, S. M., Li, Y. M.: Robust stabilization for uncertain saturated time-delay systems: a distributed-delay-dependent polytopic approach. IEEE Trans. Automat. Control 62 (2017), 3455-3460. DOI 10.1109/tac.2016.2611559 | MR 3669465
[5] Chen, Y. G., Wang, Z. D., Fei, S. M., Han, Q.-L.: Regional stabilization for discrete time-delay systems with actuator saturations via a delay-dependent polytopic approach. IEEE Trans. Automat. Control 64 (2019), 1257-1264. DOI 10.1109/tac.2018.2847903 | MR 3922091
[6] Ding, D. R., Han, Q.-L., Wang, Z. D., Ge, X. H.: A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans. Industr. Inform. 15 (2019), 2483-2499. DOI 10.1109/tii.2019.2905295
[7] Ding, D. R., Wang, Z. D., Han, Q.-L., Wei, G. L.: Neural-network-based output-feedback control under Round-Robin scheduling protocols. IEEE Trans. Cybernet. 49 (2019), 2372-2384. DOI 10.1109/tcyb.2018.2827037
[8] Ge, X. H., Han, Q.-L.: Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies. IEEE Trans. Cybernet. 47 (2017), 1807-1819. DOI 10.1109/tcyb.2016.2570860
[9] Ge, X. H., Han, Q.-L., Wang, Z. D.: A threshold-parameter-dependent approach to designing distributed event-triggered $H_\infty$ consensus filters over sensor networks. IEEE Trans. Cybernet. 49 (2019), 1148-1159. DOI 10.1109/tcyb.2017.2789296
[10] Ge, X. H., Han, Q.-L., Wang, Z. D.: A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybernet. 49 (2019), 171-183. DOI 10.1109/tcyb.2017.2789296
[11] Geng, Z. Q., Wang, Z., Hu, H. X., Han, Y. M., Lin, X. Y., Zhang, Y. H.: A fault detection method based on horizontal visibility graph-integrated complex networks: Application to complex chemical processes. Canad. J. Chemical Engrg. 97 (2019), 1129-1138. DOI 10.1002/cjce.23319
[12] Hu, J., Wang, Z. D., Gao, H. J.: Joint state and fault estimation for uncertain time-varying nonlinear systems with randomly occurring faults and sensor saturations. Automatica 97 (2018), 150-160. DOI 10.1016/j.automatica.2018.07.027 | MR 3857456
[13] Hu, J., Wang, Z. D., Liu, G.-P., Zhang, H. X.: Variance-constrained recursive state estimation for time-varying complex networks with quantized measurements and uncertain inner coupling. IEEE Trans. Neural Networks Learn. Systems (2019), 1-13. DOI 10.1109/tnnls.2019.2927554 | MR 3819246
[14] Hu, J., Wang, Z. D., Liu, S., Gao, H. J.: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements. Automatica 64 (2016), 155-162. DOI 10.1016/j.automatica.2015.11.008 | MR 3433092
[15] Hu, J., Zhang, H. X., Yu, X. Y., Liu, H. J., Chen, D. Y.: Design of sliding-mode-based control for nonlinear systems with mixed-delays and packet losses under uncertain missing probability. IEEE Trans. Systems Man Cybernet.: Systems (2019), 1-12. DOI 10.1109/tsmc.2019.2919513 | MR 0591398
[16] Hu, J., Zhang, P. P., Kao, Y. G., Liu, H. J., Chen, D. Y.: Sliding mode control for Markovian jump repeated scalar nonlinear systems with packet dropouts: The uncertain occurrence probabilities case. Applied Math. Comput. 362 (2019), 124574. DOI 10.1016/j.amc.2019.124574 | MR 3979274
[17] Huang, Y. F., Werner, S., Huang, J., Kashyap, N., Gupta, V.: State estimation in electric power grids: Meeting new challenges presented by the requirements of the future grid. IEEE Signal Process. Magazine 29 (2012), 33-44. DOI 10.1109/msp.2012.2187037
[18] Hu, J., Wang, Z. D., Alsaadi, F. E., Hayat, T.: Event-based filtering for time-varying nonlinear systems subject to multiple missing measurements with uncertain missing probabilities. Inform. Fusion 38 (2017), 74-83. DOI 10.1016/j.inffus.2017.03.003
[19] Hu, J., Liu, G.-P., Zhang, H. X., Liu, H. J.: On state estimation for nonlinear dynamical networks with random sensor delays and coupling strength under event-based communication mechanism. Inform. Sci. 511 (2020), 265-283. DOI 10.1016/j.ins.2019.09.050 | MR 4014308
[20] Kurt, M. N., Yilmaz, Y., Wang, X. D.: Secure distributed dynamic state estimation in wide-area smart grids. IEEE Trans. Inform. Forensics Security 15 (2020) 800-815. DOI 10.1109/tifs.2019.2928207
[21] Li, J. J., Wei, G. L., Ding, D. R., Liu, Y. R.: Set-membership filtering for discrete time-varying nonlinear systems with censored measurements under Round-Robin protocol. Neurocomputing 281 (2018), 20-26. DOI 10.1016/j.neucom.2017.11.033
[22] Li, W. L., Jia, Y. M., Du, J. P.: Recursive state estimation for complex networks with random coupling strength. Neurocomputing 219 (2017), 1-8. DOI 10.1016/j.neucom.2016.08.095
[23] Li, W. L., Jia, Y. M., Du, J. P.: Distributed filtering for discrete-time linear systems with fading measurements and time-correlated noise. Digital Signal Process. 60 (2017), 211-219. DOI 10.1016/j.dsp.2016.10.003 | MR 3448842
[24] Li, X.-J., Yang, G.-H.: FLS-based adaptive synchronization control of complex dynamical networks with nonlinear couplings and state-dependent uncertainties. IEEE Trans. Cybernet. 46 (2018), 171-180. DOI 10.1109/tcyb.2015.2399334
[25] Liu, X. X., Su, X. J., Shi, P., Nguang, S. K., Shen, C.: Fault detection filtering for nonlinear switched systems via event-triggered communication approach. Automatica 101 (2019), 365-376. DOI 10.1016/j.automatica.2018.12.006 | MR 3896573
[26] Manitz, J., Harbering, J., Schmidt, M., Kneib, T., Schobel, A.: Source estimation for propagation processes on complex networks with an application to delays in public transportation systems. J. Royal Statist. Soc. Series C - Applied Statistics 66 (2017), 521-536. DOI 10.1111/rssc.12176 | MR 3632340
[27] Mao, J. Y., Ding, D. R., Song, Y., Liu, Y. R., Alsaadi, F. E.: Event-based recursive filtering for time-delayed stochastic nonlinear systems with missing measurements. Signal Process. 134 (2017), 158-165. DOI 10.1016/j.sigpro.2016.12.004
[28] Mao, J. Y., Ding, D. R., Wei, G. L., Liu, H. J.: Networked recursive filtering for time-delayed nonlinear stochastic systems with uniform quantisation under Round-Robin protocol. Int. J. Systems Sci. 50 (2019), 871-884. DOI 10.1080/00207721.2019.1586002 | MR 3929256
[29] Shen, B., Wang, Z. D., Qiao, H.: Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements. IEEE Trans. Neural Networks Learn. Systems 28 (2017), 1152-1163. DOI 10.1109/tnnls.2016.2516030 | MR 3721783
[30] Shu, H. S., Zhang, S. J., Shen, B., Liu, Y. R.: Unknown input and state estimation for linear discrete-time systems with missing measurements and correlated noises. Int. J. General Systems 45 (2016), 648-661. DOI 10.1080/03081079.2015.1106732 | MR 3504376
[31] Song, W. H., Wang, J. A., Wang, C. Y., Shan, J. Y.: A variance-constrained approach to event-triggered distributed extended Kalman filtering with multiple fading measurements. Int. J. Robust Nonlinear Control 29 (2019), 1558-1576. DOI 10.1002/rnc.4456 | MR 3915150
[32] Sun, Y. C., Yang, G. H.: Event-triggered state estimation for networked control systems with lossy network communication. Inform. Sci. 492 (2019), 1-12. DOI 10.1016/j.ins.2019.03.058 | MR 3937356
[33] Wang, F., Liang, J. L., Wang, Z. D., Liu, X. H.: A variance-constrained approach to recursive filtering for nonlinear 2-D systems with measurement degradations. IEEE Trans. Cybernetics 46 (2017), 1877-1887. DOI 10.1109/tcyb.2017.2716400 | MR 4017064
[34] Wang, S. Y., Tian, X. G., Fang, H. J.: Event-based state and fault estimation for nonlinear systems with logarithmic quantization and missing measurements. J. Franklin Inst. 356 (2019), 4076-4096. DOI 10.1016/j.jfranklin.2018.11.044 | MR 3957934
[35] Wen, C. B., Wang, Z. D., Liu, Q. Y., Alsaadi, F. E.: Recursive distributed filtering for a class of state-saturated systems with fading measurements and quantization effects. IEEE Trans. Systems Man Cybernet.: Systems 48 (2016), 930-941. DOI 10.1109/tsmc.2016.2629464
[36] Wu, X., Jiang, G. P., Wang, X. W.: State estimation for general complex dynamical networks with packet loss. IEEE Trans. Circuits Systems II: Express Briefs 65 (2017), 1753-1757. DOI 10.1109/tcsii.2017.2767859
[37] Wu, Z.-G., Xu, Z. W., Shi, P., Chen, M. Z. Q., Su, H. Y.: Nonfragile state estimation of quantized complex networks with switching topologies. IEEE Trans. Neural Networks Learn. Systems 29 (2018), 5111-5121. DOI 10.1109/tnnls.2018.2790982 | MR 3875065
[38] Yan, L., Zhang, S. J., Ding, D. R., Liu, Y. R., Alsaadi, F. E.: $H_\infty$ state estimation for memristive neural networks with multiple fading measurements. Neurocomputing 230 (2017), 23-29. DOI 10.1016/j.neucom.2016.11.033
[39] Zhang, H. X., Hu, J., Liu, H. J., Yu, X. Y., Liu, F. Q.: Recursive state estimation for time-varying complex networks subject to missing measurements and stochastic inner coupling under random access protocol. Neurocomputing 346 (2019), 48-57. DOI 10.1016/j.neucom.2018.07.086
[40] Zhang, H. X., Hu, J., Zou, L., Yu, X. Y., Wu, Z. H.: Event-based state estimation for time-varying stochastic coupling networks with missing measurements under uncertain occurrence probabilities. Int. J. General Systems 47 (2018), 506-521. DOI 10.1080/03081079.2018.1445740 | MR 3790532
[41] Zhang, X.-M., Han, Q.-L.: A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs. IEEE Trans. Cybernet. 46 (2015), 2745-2757. DOI 10.1109/tcyb.2015.2487420
[42] Zhang, X.-M., Han, Q.-L., Ge, X. H., Ding, D. R., Ding, L., Yue, D., Peng, C.: Networked control systems: a survey of trends and techniques. IEEE/CAA J. Autom. Sinica (2019), 1-17. DOI 10.1109/jas.2019.1911651 | MR 3841465
[43] Zuo, Z. Y., Han, Q.-L., Ning, B. D., Ge, X. H., Zhang, X.-M.: An overview of recent advances in fixed-time cooperative control of multi-agent systems. IEEE Trans. Industr. Inform. 14 (2018), 2322-2334. DOI 10.1109/tii.2018.2817248 | MR 3932129
Partner of
EuDML logo