Previous |  Up |  Next


multi-rate time-varying system; stochastic saturation; $H_\infty $ filtering; variance-constraints; event-triggered scheme
This paper focuses on the multi-objective filtering of multirate time-varying systems with random sensor saturations, where both the variance-constrained index and the $H_\infty$ index are employed to evaluate the filtering performance. According to address issues, the high-frequency period of the internal state of the system is nondestructively converted to the low-frequency period, which determined by the measurement devices. Then the saturated output of multiple sensors is modeled as a sector bounded nonlinearity. At the same time, in order to reduce the communication frequency between sensors and filters, a communication scheduling rule is designed by the utilization of an event-triggered mechanism. By means of random analysis technology, the sufficient conditions are given to guarantee the preset $H_\infty$ performance and variance constraint performance indexes of the system, and then the solution of the desired filter is obtained by using linear matrix inequalities. Finally, the validity and effectiveness of the proposed filter scheme are verified by numerical simulation.
[1] Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G.: $H_\infty$ containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case. IEEE Trans. Cybernet. 50 (2020), 4, 1372-1382. DOI 10.1109/tcyb.2018.2885567
[2] Chen, W., Ding, D., Dong, H., Wei, G.: Distributed resilient filtering for power systems subject to denial-of-service attacks. IEEE Trans. Systems Man Cybernet.: Systems49 (2019), 8, 1688-1697. DOI 10.1109/tsmc.2019.2905253
[3] Ding, D., Wang, Z., Han, Q.-L.: A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks. IEEE Trans. Automat. Control. 1-11. DOI 10.1109/tac.2019.2934389
[4] Ding, D., Wang, Z., Han, Q.-L., Wei, G.: Neural-network-based output-feedback control under Round-Robin scheduling protocols. IEEE Trans. Cybernet, 49 (2019), 6, 2372-2384. DOI 10.1109/tcyb.2018.2827037
[5] Dong, H., Wang, Z., Ho, D., Gao, H.: Variance-constrained $H_\infty$ filtering for nonlinear time-varying stochastic systems with multiple missing measurements: The finite-horizon case. IEEE Trans. Signal Process. 58 (2010), 5, 2534-2543. DOI 10.1109/tsp.2010.2042489 | MR 2789403
[6] Ge, X., Han, Q.-L.: Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism. IEEE Trans. Industr. Electron. 64 (2017), 10, 8118-8127. DOI 10.1109/tie.2017.2701778
[7] Ge, X., Han, Q.-L., Wang, Z.: A threshold-parameter-dependent approach to designing distributed event-triggered $H_\infty$ consensus filters over sensor networks. IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. DOI 10.1109/tcyb.2017.2789296
[8] Ge, X., Han, Q.-L., Wang, Z.: A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybernet. 49 (2019), 1, 171-183. DOI 10.1109/tcyb.2017.2769722
[9] Hu, C., Qin, W., He, B., Liu, G.: Distributed $H_\infty$ estimation for moving target under switching multi-agent network. Kybernetika 51 (2015), 5, 814-829. DOI 10.14736/kyb-2015-5-0814 | MR 3445986
[10] Liang, Y., Chen, T., Pan, Q.: Multi-rate optimal state estimation. Int. J. Control 82 (2009), 11, 2059-2076. DOI 10.1080/00207170902906132 | MR 2561978
[11] Liang, Y., Chen, T., Pan, Q.: Multi-rate stochastic $H_\infty$ filtering for networked multi-sensor fusion. Kybernetika 46 (2010), 2, 437-444. MR 2877091
[12] Liu, S., Wang, Z., Wang, L., Wei, G.: On quantized $H_\infty$ filtering for multi-rate systems under stochastic communication protocols: The finite-horizon case. Inform. Sci. 459 (2018), 211-223. DOI 10.1016/j.ins.2018.02.050 | MR 3811013
[13] Lv, B., Huang, Y., Li, T., Dai, X., He, M., Zhang, W., Yang, Y.: Simulation and performance analysis of the IEEE$1588$ PTP with Kalman filtering in multi-hop wireless sensor networks. J. Networks 9 (2014), 12, 3445-53. DOI 10.4304/jnw.9.12.3445-3453
[14] Ma, L., Wang, Z., Hu, J., Bo, Y., Guo, Z.: Robust variance-constrained filtering for a class of nonlinear stochastic systems with missing measurements. Signal Process. 90 (2010), 6, 2060-2071. DOI 10.1016/j.sigpro.2010.01.010 | MR 2987050
[15] Ma, L., Xu, M., Jia, R., Ye, H.: Exponential $H_\infty$ filter design for stochastic markovian jump systems with both discrete and distributed time-varying delays. Kybernetika 50 (2014), 4, 491-511. DOI 10.14736/kyb-2014-4-0491 | MR 3275081
[16] Shen, B., Tan, H., Wang, Z., Huang, T.: Quantized/saturated control for sampleddata systems under noisy sampling intervals: a confluent vandermonde matrix approach. IEEE Trans. Automat. Control 62 (2017), 9, 4753-4759. DOI 10.1109/tac.2017.2685083 | MR 3691900
[17] Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M., Sastry, S.: Kalman filtering with intermittent observations. IEEE Trans. Automat. Control 49 (2004), 9, 1453-1464. DOI 10.1109/tac.2004.834121 | MR 2086911
[18] Su, H., Li, Z., Ye, Y.: Event-triggered Kalman-consensus filter for two-target tracking sensor networks. ISA Trans. 71 (2017), 103-111. DOI 10.1016/j.isatra.2017.06.019 | MR 3468618
[19] Subramanian, A., Sayed, A. H.: Multiobjective filter design for uncertain stochastic time-delay systems. IEEE Trans. Automat. Control 49 (2004), 1, 149-154. DOI 10.1109/tac.2003.821422 | MR 2028557
[20] Tan, H., Shen, B., Liu, Y., Alsaedi, A., Ahmad, B.: Event-triggered multi-rate fusion estimation for uncertain system with stochastic nonlinearities and colored measurement noises. Inform. Fusion 36 (2017), 313-320. DOI 10.1016/j.inffus.2016.12.003
[21] Tian, F., Cui, B.: Consensus based minimum variance filter with packet dropouts. Computer Engrg. Appl. 52 (2016), 12, 123-6, 157.
[22] Wang, Z., Shen, B., Liu, X.: $H_\infty$ filtering with randomly occurring sensor saturations and missing measurements. Automatica 48 (2012), 3, 556-562. DOI 10.1016/j.automatica.2012.01.008 | MR 2889455
[23] Xiao, Y., Cao, Y., Lin, Z.: Robust filtering for discrete-time systems with saturation and its application to transmultiplexers. IEEE Trans. Signal Process. 52 (2004), 5, 1266-1277. DOI 10.1109/tsp.2004.826180 | MR 2061982
[24] Yang, F., Li, Y.: Set-membership filtering for systems with sensors aturation. Automatica 45 (2009), 8, 1896-1902. DOI 10.1016/j.automatica.2009.04.011 | MR 2879513
[25] Zhang, W., Feng, G., Yu, L.: Multi-rate distributed fusion estimation for sensor networks with packet losses. Automatica 48 (2012), 9, 2016-2028. DOI 10.1016/j.automatica.2012.06.027 | MR 2956878
[26] Zhang, X.-M, Han, Q.-L.: A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs. IEEE Trans. Cybernet. 46 (2016), 12, 2745-2757. DOI 10.1109/tcyb.2015.2487420
[27] Zhang, X.-M, Han, Q.-L., Zhang., B.: An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans. Industr. Inform. 13 (2017), 1, 4-16. DOI 10.1109/tii.2016.2607150
[28] Zhang, X.-M, Han, Q.-L., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C.: Networked control systems: a survey of trends and techniques. IEEE/CAA J. Automat. Sinica (2019), 1-17. DOI 10.1109/jas.2019.1911651 | MR 3748030
[29] Zhang, Y., Wang, Z., Ma, L.: Variance-Constrained state estimation for networked multi-rate systems with measurement quantization and probabilistic sensor failures. Int. J. Robust Nonlinear Control 26 (2016), 16, 3507-3523. DOI 10.1002/rnc.3520 | MR 3565746
[30] Zhang, Y., Wang, Z., Zou, L., Fang, H.: Event-based finite-time filtering for multirate systems with fading measurements. IEEE Trans. Aerospace Electron. Systems 53 (2017), 3, 1431-1441. DOI 10.1109/taes.2017.2671498
[31] Zhong, M., Ye, H., Ding, S., Wang, G.: Observer-based fast rate fault detection for a class of multirate sampled-data systems. IEEE Trans. Automat. Control 52 (2007), 3, 520-525. DOI 10.1109/tac.2006.890488 | MR 2300484
[32] Zou, L., Wang, Z., Hu, J., Gao, H.: On $H_\infty$ finite-horizon filtering under stochastic protocol: dealing with high-rate communication networks. IEEE Trans. Automat. Control 62 (2017), 9, 4884-4890. DOI 10.1109/tac.2017.2691310 | MR 3691918
Partner of
EuDML logo