| Title:
|
Kappa-Slender Modules (English) |
| Author:
|
Dimitric, Radoslav |
| Language:
|
English |
| Journal:
|
Communications in Mathematics |
| ISSN:
|
1804-1388 (print) |
| ISSN:
|
2336-1298 (online) |
| Volume:
|
28 |
| Issue:
|
1 |
| Year:
|
2020 |
| Pages:
|
1-12 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
For an arbitrary infinite cardinal $\kappa $, we define classes of $\kappa $-cslender and $\kappa $-tslender modules as well as related classes of $\kappa $-hmodules and initiate a study of these classes. (English) |
| Keyword:
|
kappa-slender module |
| Keyword:
|
$k$-coordinatewise slender |
| Keyword:
|
$k$-tailwise slender |
| Keyword:
|
$k$-cslender |
| Keyword:
|
$k$-tslender |
| Keyword:
|
slender module |
| Keyword:
|
$k$-hmodule |
| Keyword:
|
the Hom functor |
| Keyword:
|
infinite products |
| Keyword:
|
filtered products |
| Keyword:
|
infinite coproducts |
| Keyword:
|
filtered products |
| Keyword:
|
non-measurable cardinal |
| Keyword:
|
torsion theory |
| MSC:
|
03C20 |
| MSC:
|
03E10 |
| MSC:
|
03E20 |
| MSC:
|
03E55 |
| MSC:
|
03E75 |
| MSC:
|
16D80 |
| MSC:
|
16D90 |
| MSC:
|
18A20 |
| MSC:
|
18A30 |
| MSC:
|
18A40 |
| MSC:
|
20K25 |
| idZBL:
|
Zbl 07368969 |
| idMR:
|
MR4124286 |
| . |
| Date available:
|
2020-07-22T11:44:29Z |
| Last updated:
|
2021-11-01 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148255 |
| . |
| Reference:
|
[1] Dimitric, R.: Slenderness in Abelian Categories.Abelian Group Theory: Proceedings of the Conference at Honolulu, Hawaii, Lect. Notes Math. 1006, 1006, 1983, 375-383, Berlin: Springer Verlag, MR 0722633 |
| Reference:
|
[2] Dimitric, R.: Slenderness. Vol. I. Abelian Categories.2018, Cambridge Tracts in Mathematics No. 215. Cambridge: Cambridge University Press, ISBN: 9781108474429. MR 3930609 |
| Reference:
|
[3] Dimitric, R.: Slenderness. Vol. II. Generalizations. Dualizations.2021, Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, MR 3930609 |
| Reference:
|
[4] Fuchs, L.: Abelian Groups.1958, Budapest: Publishing House of the Hungarian Academy of Science, Reprinted by New York: Pergamon Press (1960).. Zbl 0091.02704, MR 0106942 |
| Reference:
|
[5] Hrbacek, K., Jech, T.: Introduction to Set Theory (3rd edition, revised and expanded).1999, New York -- Basel: Marcel Dekker, MR 1697766 |
| Reference:
|
[6] Łoś, J.: Linear equations and pure subgroups.Bull. Acad. Polon. Sci, 7, 1959, 13-18, MR 0103922 |
| Reference:
|
[7] Stenström, B.: Rings of Quotients. An Introduction to Methods of Ring Theory.1975, Berlin, Heidelberg, New York: Springer-Verlag, MR 0389953 |
| . |