Article
Keywords:
$G$-set; congruence permutable algebras; semigroup
Summary:
An algebraic structure is said to be congruence permutable if its arbitrary congruences $\alpha$ and $\beta$ satisfy the equation $\alpha \circ \beta =\beta \circ \alpha$, where $\circ$ denotes the usual composition of binary relations. To an arbitrary $G$-set $X$ satisfying $G\cap X=\emptyset$, we assign a semigroup $(G,X,0)$ on the base set $G\cup X\cup \{ 0\}$ containing a zero element $0\notin G\cup X$, and examine the connection between the congruence permutability of the $G$-set $X$ and the semigroup $(G,X,0)$.
References:
                        
[1] Clifford A. H., Preston G. B.: 
The Algebraic Theory of Semigroups, Vol. I. Mathematical Surveys, No. 7, American Mathematical Society, Providence, 1961. 
MR 0132791[2] Deák A., Nagy A.: 
Finite permutable Putcha semigroups. Acta Sci. Math. (Szeged) 76 (2010), no. 3–4, 397–410. 
MR 2789677[4] McKenzien R. N., McNulty G. F., Taylor W. F.: 
Algebras, Lattices, Varieties, Vol. I. The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1987. 
MR 0883644[5] Nagy A.: 
Special Classes of Semigroups. Advances in Mathematics (Dordrecht), 1, Kluwer Academic Publishers, Dordrecht, 2001. 
MR 1777265[6] Pálfy P. P., Pudlák P.: 
Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups. Algebra Universalis 11 (1980), no. 1, 22–27. 
DOI 10.1007/BF02483080 | 
MR 0593011[8] Vernikov B. M.: 
On congruences of $G$-sets. Comment. Math. Univ. Carolin. 38 (1997), no. 3, 601–611. 
MR 1485081