Previous |  Up |  Next


cyber-physical system; FDI attacks; Event-triggered mechanisms; dynamic output feedback security control
This paper deals with the problem of security-based dynamic output feedback control of cyber-physical systems (CPSs) with the dual-terminal event triggered mechanisms (DT-ETM) under false data injection (FDI) attacks. Considering the limited attack energy, FDI attacks taking place in transmission channels are modeled as extra bounded disturbances for the resulting closed-loop system, thus enabling $H_{\infty}$ performance analysis with a suitable $\varrho$ attenuation level. Then two buffers at the controller and actuator sides are skillfully introduced to cope with the different transmission delays in such a way to facilitate the subsequent security analysis. Next, a dynamic output feedback security control (DOFSC) model based on the DT-ETM schemes under FDI attacks is well constructed. Furthermore, novel criteria for stability analysis and robust stabilization are carefully derived by exploiting Lyapunov-Krasovskii theory and LMIs technique. Finally, an illustrative example is provided to show the effectiveness of the proposed method.
[1] Ashibani, Y., Mahmoud, Q. H.: Cyber physical systems security: analysis, challenges and solutions. Computers Security 68 (2017), 81-97. DOI 
[2] Ding, D., Han, Q.-L., Wang, Z., Ge, X.: A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans. Industr. Inform. 15(2019), 5, 2483-2499. DOI 
[3] Ding, D., Wang, Z., Ho, D., Wei, G.: Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks. Automatica 78 (2017), 231-240. DOI  | MR 3614098
[4] García-Rivera, M., Barreiro, A.: Analysis of networked control systems with drops and variable delays. Automatica 43 (2007), 2054-2059. DOI  | MR 2571732
[5] Ge, X., Han, Q.-L., Wang, Z.: A threshold-parameter-dependent approach to designing distributed event-triggered $H_{\infty}$ consensus filters over sensor networks. IEEE Trans. Cybernet. 49 (2019), 1148-1159. DOI 
[6] Ge, X., Han, Q.-L., Zhang, X.-M., Ding, D., Yang, F.: Resilient and secure remote monitoring for a class of cyber-physical systems against attacks. Inform. Sci. (2019). DOI  | MR 4038642
[7] Ge, X., Han, Q.-L., Zhang, X.-M., Ding, L., Yang, F.: Distributed event-triggered estimation over sensor networks: A survey. IEEE Trans. Cybernet., to be published. DOI 
[8] Ge, X., Han, Q.-L., Zhong, M., Zhang, X.-M.: Distributed Krein space-based attack detection over sensor networks under deception attacks. Automatica 109 (2019), 108557. DOI  | MR 3998774
[9] Humayed, A., Lin, J., Li, F., Luo, B.: Cyber-physical systems security - a survey. IEEE Internet Things J. 4 (2017), 1802-1831. DOI 
[10] Liang, G., Weller, S. R., Zhao, J., Luo, F., Dong, Z.: The 2015 ukraine blackout: implications for false data injection attacks. IEEE Trans. Power Systems 32 (2017), 3317-.3318. DOI 
[11] Liu, C., Li, H., Shi, Y., Xu, D.: Distributed event-triggered gradient method for constrained convex minimization. IEEE Trans. Automat. Control (2019). DOI 
[12] Liu, C., Li, H., Shi, Y., Xu, D.: Co-design of event trigger and feedback policy in robust model predictive control. IEEE Trans. Automat. Control (2019). DOI  | MR 4052877
[13] Liu, Y., Ning, P., Reiter, M.: False data injection attacks against state estimation in electric power grids. ACM Trans. Inform. System Security 14 (2011), 1-33. DOI 
[14] Lu, A.-Y., Yang, G.-H.: False data injection attacks against state estimation in the presence of sensor failures. Inform. Sci. 508 (2020), 92-104. DOI  | MR 3998228
[15] Lu, A.-Y., Yang, G.-H.: Malicious attacks on state estimation against distributed control systems. IEEE Trans. Automat. Control (2019). DOI 
[16] Pang, Z., Liu, G., Zhou, D., Hou, F., Sun, D.: Two-channel false data injection attacks against output tracking control of networked systems. IEEE Trans. Industr. Electron. 63 (2016), 3242-3251. DOI 
[17] Park, P., Ko, J. W., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47 (2011), 235-238. DOI  | MR 2878269
[18] Peng, C., Sun, H., Yang, M., Wang, Y.: A survey on security communication and control for smart grids under malicious cyber attacks. IEEE Trans. Systems Man Cybernet.: Systems. 49 (2019), 1554-1569. DOI  | MR 0697005
[19] Peng, D., Dong, J., Cai, Z., Zhang, C., Peng, Q.: A study on stability of cyber-physical systems under false data injection attacks. J. Automat. 45 (2019), 196-205. DOI 
[20] Shi, L., Dai, Q., Ni, Y.: Review of network attacks in power information physical fusion system environment. Electr. Power Syst. Res. 163 (2018), 396-412. DOI 
[21] Song, L., Wu, J., Long, C., Li, S.: Asynchronous event-triggered output feedback control for cps under data injection attacks. In: 37th Chinese Automation Congress (2018), Xi'an, pp. 2530-2535. DOI 
[22] Song, Z., Zhai, J., Ye, H.: Global adaptive output-feedback control for switched uncertain nonlinear systems. Kybernetika 53 (2017), 263-281. DOI  | MR 3661352
[23] Teixeira, A., Shames, I., Sandberg, H., H.Johansson, K.: A secure control framework for resource-limited adversaries. Automatica 51 (2015), 135-148. DOI  | MR 3284762
[24] Wang, Q., Tai, W., Tang, Y., Ni, M.: A review of the false data injection attack against the cyber physical power system. J. Automat. 45 (2019), 72-83. DOI 
[25] Wang, D., Wu, S., Zhang, W., Wang, G., Wu, F., Okubo, S.: Model following control system with time delays. Kybernetika 52 (2016), 478-495. DOI  | MR 3532518
[26] Xiao, S., Han, Q.-L., Ge, X., Zhang, Y.: Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks. IEEE Trans. Cybernet., to be published. DOI 
[27] Yan, S., Nguang, S. K., Zhang, L.: Nonfragile integral-based event-triggered control of uncertain cyber-physical systems under cyber-attacks. Complexity ID 8194606 (2019), 14 pages. DOI 
[28] Yu, W., Deng, Z., Zhou, H., Zeng, X.: Distributed event-triggered algorithm for optimal resource allocation of multi-agent systems. Kybernetika 53 (2017), 747-764. DOI  | MR 3750101
[29] Zeng, W., Chow, M.-Y.: Optimal tradeoff between performance and security networked control systems based on coevolutionary algorithms. IEEE Trans. Industr. Electr. 59 (2012), 3016-3025. DOI 
[30] Zhang, X.-M., Han, Q.-L.: Event-triggered dynamic output feedback control for networked control systems. IET Control Theory Appl. 8 (2014), 226-234. DOI  | MR 3202366
[31] Zhang, X.-M., Han, Q.-L., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C.: Networked control systems: a survey of trends and techniques. IEEE/CAA J. Automat. Sinica, to be published. DOI  | MR 3748030
Partner of
EuDML logo