[1] Cai, S., Zhou, P., Liu, Z.: 
Pinning synchronization of hybrid-coupled directed delayed dynamical network via intermittent control. Chaos 24 (2014), 033102. 
DOI 10.1063/1.4886186 | 
MR 3404400[2] Carr, T. W., Schwartz, I. B.: 
Controlling the unstable steady state in a multimode laser. Phys. Rev. E 51 (1995), 5109-5111. 
DOI 10.1103/physreve.51.5109[4] Dong, Y., Liang, S., Guo, L., Wang, W.: 
Exponential stability and stabilization for uncertain discrete-time periodic systems with time-varying delay. IMA J. Math. Control Inform. 35 (2018), 3, 963-986. 
DOI 10.1093/imamci/dnx003 | 
MR 3858299[6] Fang, T., Sun, J.: 
Stability of complex-valued impulsive and switching system and application to the Lü system. Nonlinear Analysis: Hybrid Systems 14 (2015), 38-46. 
DOI 10.1016/j.nahs.2014.04.004 | 
MR 3228049[8] Huang, T., Li, C., Liu, X.: 
Synchronization of chaotic systems with delay using intermittent linear state feedback. Chaos 18 (2008), 033122. 
DOI 10.1063/1.2967848 | 
MR 2464303[9] Jiang, C., Zhang, F., Li, T.: 
Synchronization and antisynchronization of N-coupled fractional-order complex chaotic systems with ring connection. Math. Methods Appl. Sci. 41 (2018), 2625-2638. 
DOI 10.1002/mma.4765 | 
MR 3790715[10] Li, C. D., Liao, X. F., Huang, T. W.: 
Exponential stabilization of chaotic systems with delay by periodically intermittent control. Chaos 17 (2007), 013103. 
DOI 10.1063/1.2430394 | 
MR 2319024[11] Li, N., Sun, H., Zhang, Q.: 
Exponential synchronization of united complex dynamical networks with multi-links via adaptive periodically intermittent control. IET Control Theory Appl. 159 (2013), 1725-1736. 
DOI 10.1049/iet-cta.2013.0159 | 
MR 3115117[12] Liang, Y., Wang, X.: 
Synchronization in complex networks with non-delay and delay couplings via intermittent control with two switched periods. Physica A 395 (2014), 434-444. 
DOI 10.1016/j.physa.2013.10.002 | 
MR 3133676[13] Liu, X., Chen, T.: 
Synchronization of complex networks via aperiodically intermittent pinning control. IEEE Trans. Automat. Control 60 (2015), 3316-3321. 
DOI 10.1109/tac.2015.2416912 | 
MR 3432701[14] Liu, X., Liu, Y., Zhou, L.: 
Quasi-synchronization of nonlinear coupled chaotic systems via aperiodically intermittent pinning control. Neurocomputing 173 (2016), 759-767. 
DOI 10.1016/j.neucom.2015.08.027[15] Liu, L., Wang, Z., Huang, Z., Zhang, H.: 
Adaptive predefined performance control for IMO systems with unknown direction via generalized fuzzy hyperbolic model. IEEE Trans. Fuzzy Systems 25 (2007), 527-542. 
DOI 10.1109/tfuzz.2016.2566803[16] Mahmoud, G. M., Bountis, T., Mahmoud, E. E.: 
Active control and global synchronization for complex Chen and Lü systems. Int. J. Bifurcat. Chaos 17 (2014), 4295-4308. 
DOI 10.1142/s0218127407019962 | 
MR 2394229[18] Mahmoud, G., Mahmoud, E., Arafa, A.: 
Projective synchronization for coupled partially linear complex-variable systems with known parameters. Math. Methods Appl. Sci. 40 (2017), 1214-1222. 
DOI 10.1002/mma.4045 | 
MR 3610726[19] Ning, C. Z., Haken, H.: 
Detuned lasers and the complex Lorenz equations: Subcritical and supercritical Hopf bifurcations. Phys. Rev. A 41 (1990), 3826-3837. 
DOI 10.1103/physreva.41.3826[22] Qiu, J., Cheng, L., X, Chen, Lu, J., He, H.: 
Semi-periodically intermittent control for synchronization of switched complex networks: a mode-dependent average dwell time approach. Nonlinear Dynamics 83 (2016), 1757-1771. 
DOI 10.1007/s11071-015-2445-y | 
MR 3449506[24] Xia, W., Cao, J.: 
Pinning synchronization of delayed dynamical networks via periodically intermittent control. Chaos 19 (2009), 013120. 
DOI 10.1063/1.3071933 | 
MR 2513764[26] Zheng, S.: 
Impulsive complex projective synchronization in drive-response complex coupled dynamical networks. Nonlinear Dynamics 79 (2015), 147-161. 
DOI 10.1007/s11071-014-1652-2 | 
MR 3302683[27] Zheng, S.: 
Stability of uncertain impulsive complex-variable chaotic systems with time- varying delays. ISA Trans. 58 (2015), 20-26. 
DOI 10.1016/j.isatra.2015.05.016[28] Zheng, S.: 
Further Results on the impulsive synchronization of uncertain complex-variable chaotic delayed systems. Complexity 21 (2016), 131-142. 
DOI 10.1002/cplx.21641 | 
MR 3508409[30] Zheng, S.: 
Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods. Kybernetika 54 (2018), 937-957. 
DOI 10.14736/kyb-2018-5-0937 | 
MR 3893129