Previous |  Up |  Next


Title: A generalised proportional-derivative force/vision controller for torque-driven planar robotic manipulators (English)
Author: Vidrios-Serrano, Carlos
Author: Mendoza, Marco
Author: Bonilla, Isela
Author: Maldonado-Fregoso, Berenice
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 4
Year: 2020
Pages: 821-841
Summary lang: English
Category: math
Summary: In this paper, a family of hybrid control algorithms is presented; where it is merged a free camera-calibration image-based control scheme and a direct force controller, both with the same priority level. The aim of this generalised hybrid controller is to regulate the robot-environment interaction into a two-dimensional task-space. The design of the proposed control structure takes into account most of the dynamic effects present in robot manipulators whose inputs are torque signals. As examples of this generalised structure of hybrid force/vision controllers, a linear proportional-derivative structure and a nonlinear proportional-derivative one (based on the hyperbolic tangent function) are presented. The corresponding stability analysis, using Lyapunov's direct method and invariance theory, is performed to proof the asymptotic stability of the equilibrium vector of the closed-loop system. Experimental tests of the control scheme are presented and a suitable performance is observed in all the cases. Unlike most of the previously presented hybrid schemes, the control structure proposed herein achieves soft contact forces without overshoots, fast convergence of force and position error signals, robustness of the controller in the face of some uncertainties (such as camera rotation), and safe operation of the robot actuators when saturating functions (non-linear case) are used in the mathematical structure. This is one of the first works to propose a generalized structure of hybrid force/vision control that includes a closed loop stability analysis for torque-driven robot manipulators. (English)
Keyword: control
Keyword: force
Keyword: vision
Keyword: robot manipulator
Keyword: stability
MSC: 68T40
MSC: 93C85
MSC: 93D05
idZBL: Zbl 07286049
idMR: MR4168538
DOI: 10.14736/kyb-2020-4-0821
Date available: 2020-10-30T16:35:24Z
Last updated: 2021-02-23
Stable URL:
Reference: [1] Aghaie, S., Khanmohammadi, S., Moghadam-Fard, H., Samadi, F.: Adaptive vision-based control of robot manipulators using the interpolating polynomial..Trans. Inst. Meas. Control 36 (2014), 6, 837-844. 10.1177/0142331214523307
Reference: [2] Bdiwi, M., Winkler, A., Suchy, J., Zschocke, G.: Traded and shared vision-force robot control for improved impact control..In: Proc. of the 18th IEEE International Multi-Conference on Systems, Signals and Devices, Sousse 2011, pp. 154-159. 10.1109/ssd.2011.5981425
Reference: [3] Carelli, R., Oliva, E., Soria, C., Nasisi, O.: Combined force and visual control of an industrial robot..Robotica 22 (2004), 2, 163-171. 10.1017/s0263574703005423
Reference: [4] Chávez-Olivares, C., Reyes-Cortés, F., González-Galván, E.: On explicit force regulation with active velocity damping for robot manipulators..Automatika 56(4) (2015), 478-490. 10.1080/00051144.2015.11828661
Reference: [5] Chávez-Olivares, C., Reyes-Cortés, F., González-Galván, E.: On stiffness regulators with dissipative injection for robot manipulators..Int. J. Adv. Rob. Syst. 12 (2015), 6, 65. 10.5772/60054
Reference: [6] Chiaverini, S., Sciavicco, L.: The parallel approach to force/position control of robotic manipulators..IEEE Trans. Rob. Autom. 9 (1993), 4, 361-373. 10.1109/70.246048
Reference: [7] Corke, P.: Robotics, Vision and Control: Fundamental Algorithms in MATLAB..Springer-Verlag, London 2017. 10.1007/978-3-319-54413-7
Reference: [8] Hogan, N.: Stable execution of contact tasks using impedance control..In: Proc. of the IEEE International Conference on Robotics and Automation, Raleigh 1987, pp. 1047-1054. 10.1109/robot.1987.1087854
Reference: [9] Huang, Y., Zhang, X., Chen, X., Ota, J.: Vision-guided peg-in-hole assembly by baxter robot..Adv. Mech. Eng. 9 (2017), 12, 168781401774807. 10.1177/1687814017748078
Reference: [10] Hutchinson, S., Hager, G. D., Corke, P.I.: A tutorial on visual servo control..IEEE Trans. Rob. Autom. 12 (1996), 5, 651-670. 10.1109/70.538972
Reference: [11] Kelly, R.: Robust asymptotically stable visual servoing of planar robots..IEEE Trans. Rob. Autom. 12 (1996), 5, 759-766. 10.1109/70.538980
Reference: [12] Kelly, R., Santibáñez-Dávila, V., Loría-Perez, J. A.: Control of Robot Manipulators in Joint Space..Springer-Verlag, London 2006.
Reference: [13] Li, X., Liu, Y.H., Yu, H.: Iterative learning impedance control for rehabilitation robots driven by series elastic actuators..Automatica 90 (2018), 1-7. MR 3764378, 10.1016/j.automatica.2017.12.031
Reference: [14] Lippiello, V., Siciliano, B., Villani, L.: A position-based visual impedance control for robot manipulators..In: Proc. of the IEEE International Conference on Robotics and Automation, Roma 2007, pp. 2068-2073. 10.1109/robot.2007.363626
Reference: [15] Lippiello, V., Siciliano, B., Villani, L.: Position-based visual servoing in industrial multirobot cells using a hybrid camera configuration..IEEE Trans. Rob. 23 (2007), 1, 73-86. 10.1109/tro.2006.886832
Reference: [16] Long, P., Khalil, W., Martinet, P.: Robotic cutting of soft materials using force control and image moments..In: Proc. of the 13th International Conference on Control Automation Robotics and Vision, Singapore 2014, pp. 474-479. 10.1109/icarcv.2014.7064351
Reference: [17] Mezouar, Y., Prats, M., Martinet, P.: External hybrid vision/force control..In: Proc. of the IEEE International Conference on Advanced Robotics, Jeju 2007, pp. 170-175.
Reference: [18] Muñoz-Vázquez, A.J., Parra-Vega, V., Sánchez-Orta, A., Ruiz-Sánchez, F.: A novel force-velocity field for object manipulation with a model-free cooperative controller..Trans. Inst. Meas. Control 41 (2019), 2, 573-581. 10.1177/0142331218762272
Reference: [19] Mut, V., Nasisi, O., Carelli, R., Kuchen, B.: Tracking robust impedance robot control with visual feedback..In: Proc. of the 6th IFAC Symposium on Robot Control, Vienna 2000, pp. 69-74. 10.1016/s1474-6670(17)37907-7
Reference: [20] Nammoto, T., Kosuge, K., Hashimoto, K.: Model-based compliant motion control scheme for assembly tasks using vision and force information..In: Proc. of the IEEE International Conference on Automation Science and Engineering, Wisconsin 2013, pp. 948-953. 10.1109/coase.2013.6653912
Reference: [21] Nelson, B. J., Khosla, P. K.: Force and vision resolvability for assimilating disparate sensory feedback..IEEE Trans. Rob. Autom. 12 (1996), 5, 714-731. 10.1109/70.538976
Reference: [22] Ortenzi, V., Marturi, N., Mistry, M., Kuo, J., Stolkin, R.: Vision-based framework to estimate robot configuration and kinematic constraints..IEEE/ASME Trans. Mechatron. 23 (2018), 5, 2402-2412. 10.1109/tmech.2018.2865758
Reference: [23] Prats, M., Martinet, P., Pobil, A. P. Del, Lee, S.: Robotic execution of everyday tasks by means of external vision/force control..Intell. Serv. Robot. 1 (2008), 3, 253-266. 10.1007/s11370-007-0008-x
Reference: [24] Rodriguez-Angeles, A., Vazquez-Chavez, L.F.: Bio-inspired decentralized autonomous robot mobile navigation control for multi agent systems..Kybernetika 54 (2018), 1, 135-154. MR 3780960, 10.14736/kyb-2018-1-0135
Reference: [25] Takegaki, M., Arimoto, S.: A new feedback method for dynamic control of manipulators..ASME J. Dyn. Syst. Meas. Control 103 (1981), 119-125. Zbl 0473.93012, 10.1115/1.3139651
Reference: [26] Wang, H., Xie, Y.: Adaptive jacobian position/force tracking control of free-flying manipulators..Rob. Auton. Syst. 57 (2009), 2, 173-181. 10.1016/j.robot.2008.05.003
Reference: [27] Yu, L., Fei, S., Huang, J., Li, Y., Yang, G., Sun, L.: Robust neural network control of robotic manipulators via switching strategy..Kybernetika 51 (2015), 2, 309-320. MR 3350564, 10.14736/kyb-2015-2-0309
Reference: [28] Yüksel, T.: An intelligent visual servo control system for quadrotors..Trans. Inst. Meas. Control 41 (2019), 1, 3-13. 10.1177/0142331217751599
Reference: [29] Zhaik, C.: Sweep coverage of discrete time multi-robot networks with general topologies..Kybernetika 50 (2014), 1, 19-31. MR 3195002, 10.14736/kyb-2014-1-0019


Files Size Format View
Kybernetika_56-2020-4_12.pdf 1.341Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo