[1] Abbas, S., Benchohra, M.: 
On the existence and local asymptotic stability of solutions of fractional order integral equations. Comment. Math. 52 (1) (2012), 91–100. 
MR 2977716[2] Abbas, S., Benchohra, M.: 
Existence and attractivity for fractional order integral equations in Fréchet spaces. Discuss. Math. Differ. Incl. Control Optim. 33 (1) (2013), 1–17. 
DOI 10.7151/dmdico.1141 | 
MR 3136582[3] Abbas, S., Benchohra, M., Diagana, T.: 
Existence and attractivity results for some fractional order partial integro-differential equations with delay. Afr. Diaspora J. Math. 15 (2) (2013), 87–100. 
MR 3161669[4] Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: 
Implicit Fractional Differential and Integral Equations: Existence and Stability. De Gruyter, Berlin, 2018. 
MR 3791511[5] Abbas, S., Benchohra, M., Henderson, J.: 
Asymptotic attractive nonlinear fractional order Riemann-Liouville integral equations in Banach algebras. Nonlinear Stud. 20 (1) (2013), 1–10. 
MR 3058403[6] Abbas, S., Benchohra, M., N’Guérékata, G.M.: 
Topics in Fractional Differential Equations. Springer, New York, 2012. 
MR 2962045[7] Abbas, S., Benchohra, M., N’Guérékata, G.M.: 
Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York, 2015. 
MR 3309582 | 
Zbl 1314.34002[9] Agarwal, R.: 
Certain fractional $q$- integrals and $q$-derivatives. Proc. Cambridge Philos. Soc. 66 (1969), 365–370. 
MR 0247389[10] Ahmad, B.: 
Boundary value problem for nonlinear third order $q$-difference equations. Electron. J. Differential Equations 2011 (94) (2011), 1–7. 
MR 2832270[11] Ahmad, B., Ntouyas, S.K., Purnaras, L.K.: 
Existence results for nonlocal boundary value problems of nonlinear fractional $q$-difference equations. Adv. Difference Equ. 2012 (2012), 14 pp. 
MR 3016054[12] Almezel, S., Ansari, Q.H., Khamsi, M.A.: 
Topics in Fixed Point Theory. Springer-Verlag, New York, 2014. 
MR 3411798[13] Benchohra, M., Berhoun, F., N’Guérékata, G.M.: 
Bounded solutions for fractional order differential equations on the half-line. Bull. Math. Anal. Appl. 146 (4) (2012), 62–71. 
MR 2955875[15] Carmichael, R.D.: 
The general theory of linear $ q$-difference equations. American J. Math. 34 (1912), 147–168. 
DOI 10.2307/2369887 | 
MR 1506145[16] Corduneanu, C.: 
Integral Equations and Stability of Feedback Systems. Academic Press, New York, 1973. 
MR 0358245 | 
Zbl 0273.45001[17] Dudek, S.: 
Fixed point theorems in Fréchet Algebras and Fréchet spaces and applications to nonlinear integral equations. Appl. Anal. Discrete Math. 11 (2017), 340–357. 
DOI 10.2298/AADM1702340D | 
MR 3719830[18] Dudek, S., Olszowy, L.: 
Continuous dependence of the solutions of nonlinear integral quadratic Volterra equation on the parameter. J. Funct. Spaces (2015), 9 pp., Article ID 471235. 
MR 3319202[20] Etemad, S., Ntouyas, S.K., Ahmad, B.: 
Existence theory for a fractional $q$-integro-difference equation with $q$-integral boundary conditions of different orders. Mathematics 7 (2019), 1–15. 
DOI 10.3390/math7080659[23] Kilbas, A.A.: 
Hadamard-type fractional calculus. J. Korean Math. Soc. 38 (6) (2001), 1191–1204. 
MR 1858760[24] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: 
Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. 
MR 2218073 | 
Zbl 1092.45003[27] Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: 
Fractional integrals and derivatives in $q$-calculus. Appl. Anal. Discrete Math. 1 (2007), 311–323. 
DOI 10.2298/AADM0701311R | 
MR 2316607[28] Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: 
On $q$-analogues of Caputo derivative and Mittag-Leffler function. Fract. Calc. Appl. Anal. 10 (2007), 359–373. 
MR 2378985[29] Samko, S.G., Kilbas, A.A., Marichev, O.I.: 
Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian. 
MR 1347689[30] Tarasov, V.E.: 
Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg; Higher Education Press, Beijing, 2010. 
MR 2796453[31] Tenreiro Machado, J.A., Kiryakova, V.: 
The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 20 (2017), 307–336. 
MR 3657873[32] Zhou, Y.: 
Basic Theory of Fractional Differential Equations. World Scientific, Singapore, 2014. 
MR 3287248