[1] Adams R. A., Fournier J. J. F.: 
Sobolev Spaces. Pure and Applied Mathematics (Amsterdam), 140, Elsevier Academic Press, Amsterdam, 2003. 
MR 2424078 | 
Zbl 1098.46001[2] Arriagada W., Huentutripay J.: 
Blow-up rates of large solutions for a $\phi$-Laplacian problem with gradient term. Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 4, 669–689. 
MR 3233749[3] Arriagada W., Huentutripay J.: 
Characterization of a homogeneous Orlicz space. Electron. J. Differential Equations 2017 (2017), Paper No. 49, 17 pages. 
MR 3625929[4] Arriagada W., Huentutripay J.: 
Regularity, positivity and asymptotic vanishing of solutions of a $\phi$-Laplacian. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 25 (2017), no. 3, 59–72. 
MR 3747154[5] Brezis H.: 
Analyse fonctionnelle. Théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983 (French). 
MR 0697382[8] Drábek P., Manásevich R.: 
On the closed solution to some nonhomogeneous eigenvalue problems with $p$-Laplacian. Differential Integral Equations 12 (1999), no. 6, 773–788. 
MR 1728030[12] Fukagai N., Ito M., Narukawa K.: 
Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on ${\mathbb{R}}^N$. Funkcial. Ekvac. 49 (2006), no. 2, 235–267. 
DOI 10.1619/fesi.49.235 | 
MR 2271234[13] Garcia Azorero J. P., Peral Alonso I.: 
Existence and nonuniqueness for the $p$-Laplacian: nonlinear eigenvalues. Comm. Partial Differential Equations 12 (1987), no. 12, 1389–1403. 
MR 0912211[14] García-Huidobro M., Le V. K., Manásevich R., Schmitt K.: 
On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz–Sobolev space setting. NoDEA Nonlinear Differential Equations Appl. 6 (1999), no. 2, 207–225. 
DOI 10.1007/s000300050073 | 
MR 1694787[16] Gossez J.-P.: 
Orlicz–Sobolev spaces and nonlinear elliptic boundary value problems. Nonlinear Analysis, Function Spaces and Applications, Proc. Spring School, Horni Bradlo, 1978, Teubner, Leipzig, 1979, pages 59–94. 
MR 0578910[17] Gossez J.-P., Manásevich R.: 
On a nonlinear eigenvalue problem in Orlicz–Sobolev spaces. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), no. 4, 891–909. 
MR 1926921[18] Huentutripay J., Manásevich R.: 
Nonlinear eigenvalues for a quasilinear elliptic system in Orlicz–Sobolev spaces. J. Dynam. Differential Equations 18 (2006), no. 4, 901–921. 
DOI 10.1007/s10884-006-9049-7 | 
MR 2263407[19] Krasnosel'skiĭ M. A., Rutic'kiĭ Ja. B.: Convex Functions and Orlicz Spaces. Noordhoff, Groningen, 1961.
[20] Lang S.: 
Real and Functional Analysis. Graduate Texts in Mathematics, 142, Springer, New York, 1993. 
MR 1216137 | 
Zbl 0831.46001[21] Lê A.: 
Eigenvalue problems for the $p$-Laplacian. Nonlinear Anal. 64 (2006), no. 5, 1057–1099. 
MR 2196811[22] Lieberman G. M.: 
The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations. Comm. Partial Differential Equations 16 (1991), no. 2–3, 311–361. 
DOI 10.1080/03605309108820761 | 
MR 1104103[25] Mihăilescu M., Rădulescu V.: 
On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proc. Amer. Math. Soc. 135 (2007), no. 9, 2929–2937. 
DOI 10.1090/S0002-9939-07-08815-6 | 
MR 2317971[26] Mihăilescu M., Rădulescu V.: 
Eigenvalue problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces. Anal. Appl. (Singap.) 6 (2008), no. 1, 83–98. 
DOI 10.1142/S0219530508001067 | 
MR 2380887[27] Mihăilescu M., Rădulescu V., Repovš D.: 
On a non-homogeneous eigenvalue problem involving a potential: an Orlicz–Sobolev space setting. J. Math. Pures Appl. (9) 93 (2010), no. 2, 132–148. 
DOI 10.1016/j.matpur.2009.06.004 | 
MR 2584738[28] Mustonen V., Tienari M.: 
An eigenvalue problem for generalized Laplacian in Orlicz–Sobolev spaces. Proc. Roy. Soc. Edinburgh A 129 (1999), no. 1, 153–163. 
MR 1669197[29] Pick L., Kufner A., John O., Fučík S.: 
Function Spaces. Vol. 1, De Gruyter Series in Nonlinear Analysis and Applications, 14, Walter de Gruyter, Berlin, 2013. 
MR 3024912[30] Rădulescu V. D.: 
Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. 121 (2015), 336–369. 
MR 3348928